【題目】已知角β的終邊在直線xy=0上.

(1)寫出角β的集合S;

(2)寫出S中適合不等式-360°<β<720°的元素.

【答案】(1)S={β|β=60°+k·180°,kZ};(2)-300°,-120°,60°,240°,420°,600°.

【解析】

(1)β的終邊在直線xy=0上,且直線xy=0的傾斜角為60°,所以角β的集合S={β|β=60°+k·180°,kZ};(2)S={β|β=60°+k·180°,kZ}中,對整數(shù)k賦值,找出S中適合不等式-360°<β<720°的元素即可.

(1)因為角β的終邊在直線xy=0上,且直線xy=0的傾斜角為60°,所以角β的集合S={β|β=60°+k·180°,kZ}.

(2)S={β|β=60°+k·180°,kZ}中,

k=-2,得β=-300°,

k=-1,得β=-120°,

k=0,得β=60°,

k=1,得β=240°,

k=2,得β=420°,

k=3,得β=600°.

所以S中適合不等式-360°<β<720°的元素分別是-300°,-120°,60°,240°,420°,600°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某測試團(tuán)隊為了研究“飲酒”對“駕車安全”的影響,隨機(jī)選取名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車距離”測試.試驗數(shù)據(jù)分別列于表和表.統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表.

停車距離(米)

頻數(shù)

平均每毫升血液酒精含量毫克

平均停車距離

1)根據(jù)最小二乘法,由表的數(shù)據(jù)計算關(guān)于的回歸方程;

2)該測試團(tuán)隊認(rèn)為:駕駛員酒后駕車的平均“停車距離”大于無酒狀態(tài)下(表)的停車距離平均數(shù)的倍,則認(rèn)定駕駛員是“醉駕”.請根據(jù)(1)中的回歸方,預(yù)測當(dāng)每毫升血液酒精含量大于多少毫克時為“醉駕”?

附:回歸方程中,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在[11]上的偶函數(shù)f(x),已知當(dāng)x∈[0,1]時的解析式為(aR)

(1)f(x)[-1,0]上的解析式;

(2)f(x)[0,1]上的最大值h(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(Ⅰ)求不等式的解集;

(Ⅱ)已知函數(shù)的最小值為,若實數(shù),求

最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】男運動員名,女運動員名,其中男女隊長各人,從中選人外出比賽,分別求出下列情形有多少種選派方法?(以數(shù)字作答)

名,女名;

隊長至少有人參加;

至少名女運動員;

既要有隊長,又要有女運動員.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)以往的經(jīng)驗,某建筑工程施工期間的降水量單位: 對工期的影響如下表:

根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前20天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.

1根據(jù)降水量的折線圖,分別求該工程施工延誤天數(shù)的頻率;

2)以1中的頻率作為概率,求工期延誤天數(shù)的分布列及數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】乙兩人各射擊一次,擊中目標(biāo)的概率分別是. 假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每次射擊是否擊中目標(biāo),相互之間沒有影響.

(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;

(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;

(3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊. 問:乙恰好射擊5次后,被中止射擊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)的內(nèi)角所對的邊分別是,且的等差中項.

(Ⅰ)求角

(Ⅱ)設(shè),求周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案