【題目】設(shè)的內(nèi)角所對的邊分別是,且的等差中項.

(Ⅰ)求角;

(Ⅱ)設(shè),求周長的最大值.

【答案】(1)60°;(2)6.

【解析】

分析:(1)法一:由題意,利用正弦定理,化簡得,即可求解角的大;

法二:由題意,利用余弦定理化簡得到,即,即可求解角的大;

(2)法一:由余弦定理及基本不等式,得,進而得周長的最大值;法二:由正弦定理和三角恒等變換的公式化簡整理得,進而求解周長的最大值.

詳解:(1)法一:由題,,

由正弦定理,,

,解得,所以

法二:由題,由余弦定理得: ,

解得,所以

(2)法一:由余弦定理及基本不等式,

,當且僅當時等號成立,

周長的最大值為

法二:由正弦定理,,

故周長

,∴當時,周長的最大值為

法三:如圖,延長使得,則

于是,在中,由正弦定理:

,

故周長,

,∴當時,周長的最大值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知角β的終邊在直線xy=0上.

(1)寫出角β的集合S;

(2)寫出S中適合不等式-360°<β<720°的元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃在甲、乙兩個電視臺做總時間不超過 300 分鐘的廣告,廣告總費用不超過9萬元.甲、乙電視臺的廣告收費標準分別為500元/分鐘和200元/分鐘.甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司帶來的收益分別為0.3萬元和0.2萬元.設(shè)該公司在甲、乙兩個電視臺做廣告的時間分別為分鐘和分鐘.

(Ⅰ)用列出滿足條件的數(shù)學關(guān)系式,并畫出相應的平面區(qū)域;

(Ⅱ)該公司如何分配在甲、乙兩個電視臺做廣告的時間使公司的收益最大,并求出最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若曲線在點處的切線為 軸的交點坐標為,求的值;

2)討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱臺中,均為等邊三角形,四邊形為直角梯形,平面,分別為的中點.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計,在不考慮其他因素的條件下,某段下水道的排水量V(單位:立方米/小時)是垃圾雜物密度x(單位:千克/立方米)的函數(shù)。當下水道的垃圾雜物密度達到3千克/立方米時,會造成堵塞,此時排水量為0;當垃圾雜物密度不超過0.5千克/立方米時,排水量是80立方米/小時。研究表明,當時,排水量V是垃圾雜物密度x的一次函數(shù).

1)當時,求函數(shù)的解析式;

2)當垃圾雜物密度x為多大時,垃圾雜物量(單位時間內(nèi)通過某段下水道的垃圾雜物量,單位:千克/小時)可以達到最大?求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),定義函數(shù),給出下列命題:

;

②函數(shù)是偶函數(shù);

③當a<0時,若0<m<n<1,則有F(m)﹣F(n)<0成立;

④當a>0時,函數(shù)4個零點.

其中正確命題的序號為________________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,均為邊長為3的等邊三角形,且,則三棱錐外接球的體枳為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家A1,A2,A33個歐洲國家B1,B2,B3中選擇2個國家去旅游.

(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.

查看答案和解析>>

同步練習冊答案