【題目】在三棱柱中,已知側(cè)棱底面為的中點(diǎn), .
(1)證明: 平面;
(2)求點(diǎn)到平面的距離.
【答案】(1)詳見解析;(2).
【解析】試題分析:(1)證明線面垂直,一般利用線面垂直判定定理,即從線線垂直出發(fā)給予證明,而線線垂直的尋找,往往從兩個(gè)方面出發(fā),一是利用線面垂直性質(zhì)定理得線線垂直,二是利用平幾知識,結(jié)合勾股定理得線線垂直,(2)求點(diǎn)到直線距離,往往利用等體積法求高得到.
試題解析:
解:(1) 證明:在中, 為的中點(diǎn),故,又側(cè)棱底面,所以,又,所以平面,則,在中,
;在中, ,所以,
又,所以,即,又,所以平面.
(2)設(shè)點(diǎn)到平面的距離為,由于,即,于是,
所以點(diǎn)到平面的距離為.
點(diǎn)睛:利用等積法可以用來求解幾何圖形的高或幾何體的高或內(nèi)切球的半徑,特別是在求三角形的高和三棱錐的高時(shí),這一方法回避了通過具體作圖得到三角形(或三棱錐)的高,而通過直接計(jì)算得到高的數(shù)值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)是定義在R上的增函數(shù),下列函數(shù)中
①y=[f(x)]2是增函數(shù);
②y= 是減函數(shù);
③y=﹣f(x)是減函數(shù);
④y=|f(x)|是增函數(shù);
其中正確的結(jié)論是( )
A.③
B.②③
C.②④
D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期“共享單車”在全國多個(gè)城市持續(xù)升溫,某移動互聯(lián)網(wǎng)機(jī)構(gòu)通過對使用者的調(diào)查得出,現(xiàn)在市場上常見的八個(gè)品牌的“共享單車”的滿意度指數(shù)如莖葉圖所示:
(Ⅰ)求出這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(Ⅱ)某用戶從滿意度指數(shù)超過80的品牌中隨機(jī)選擇兩個(gè)品牌使用,求所選兩個(gè)品牌的滿意度指數(shù)均超過85的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意x,[x]表示不超過x的最大整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤1},則A中所有元素的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)在單調(diào)遞增,其中.
(1)求的值;
(2)若,當(dāng)時(shí),試比較與的大小關(guān)系(其中是的導(dǎo)函數(shù)),請寫出詳細(xì)的推理過程;
(3)當(dāng)時(shí), 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求f(1),f[f(﹣2)]的值;
(2)若f(a)=10,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 的圓心為原點(diǎn) ,且與直線 相切。
(1)求圓 的方程;
(2)過點(diǎn) (8,6)引圓O的兩條切線 ,切點(diǎn)為 ,求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求在區(qū)間上的極小值和極大值點(diǎn);
(2)求在(為自然對數(shù)的底數(shù))上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com