精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

(1)設,討論的單調性;

(2)若不等式恒成立,其中為自然對數的底數,求的最小值.

【答案】(1)見解析;(2)

【解析】試題分析:1函數定義域為,由題意得,則,分情況,由導函數的正負求單調區(qū)間即可;

(2)設函數 ,分易知不成立, ,計算函數的最大值為,由,得,令, ,求最值即可.

試題解析:

(1)函數定義域為,由題意得,則,

①當時, ,則上單調遞增;

②當時,令,解得,

時, , 上單調遞增,

時, 上單調遞減.

(2)設函數,其中為自然對數的底數,

,

時, 上是增函數,∴不可能恒成立,

時,由,得,

∵不等式恒成立,∴

時, , 單調遞增,

時, 單調遞減,

∴當時, 取最大值,

∴滿足即可,∴

,

, ,

.

, ,

,得,

時, 是增函數,

時, , 是減函數,

∴當時, 取最小值,

時, , 時, , ,

∴當時, , 是減函數,

時, , 是增函數,

時, 取最小值, ,

的最小值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次環(huán)保知識競賽,共有900名學生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數,滿分為100)進行統(tǒng)計. 請你根據尚未完成并有局部污損的頻率分布表和頻數分布直方圖,解答下列問題:

1)填充頻率分布表的空格(將答案直接填在表格內)

2)補全頻數分布直方圖;

3)若成績在75.585.5分的學生為二等獎,問獲得二等獎的學生約為多少人?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數是定義域為的偶函數,當時,,若關于的方程,有且僅有5個不同實數根,則實數a的取值范圍是______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某農業(yè)合作社生產了一種綠色蔬菜共噸,如果在市場上直接銷售,每噸可獲利萬元;如果進行精加工后銷售,每噸可獲利萬元,但需另外支付一定的加工費,總的加工(萬元)與精加工的蔬菜量(噸)有如下關系:設該農業(yè)合作社將(噸)蔬菜進行精加工后銷售,其余在市場上直接銷售,所得總利潤(扣除加工費)為(萬元).

(1)寫出關于的函數表達式;

(2)當精加工蔬菜多少噸時,總利潤最大,并求出最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】電視臺應某企業(yè)之約播放兩套連續(xù)劇,其中,連續(xù)劇甲每次播放時間80分鐘,其中廣告時間1分鐘,收視觀眾60萬;連續(xù)劇乙每次播放時間40分鐘,其中廣告時間1分鐘,收視觀眾20萬.現在企業(yè)要求每周至少播放廣告6分鐘,而電視臺每周至多提供320分鐘節(jié)目時間.

(1)設每周安排連續(xù)劇甲次,連續(xù)劇乙次,列出,所應該滿足的條件;

(2)應該每周安排兩套電視劇各多少次,收視觀眾最多?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點和直線,為曲線上一點,為點到直線的距離且滿足.

(1)求曲線的軌跡方程;

(2)過點作曲線的兩條動弦,若直線斜率之積為,試問直線是否一定經過一定點?若經過,求出該定點坐標;若不經過,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的值為4,則判斷框中應填入的條件是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案