【題目】已知點(diǎn)和直線,為曲線上一點(diǎn),為點(diǎn)到直線的距離且滿足.

(1)求曲線的軌跡方程;

(2)過點(diǎn)作曲線的兩條動(dòng)弦,若直線斜率之積為,試問直線是否一定經(jīng)過一定點(diǎn)?若經(jīng)過,求出該定點(diǎn)坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

【答案】(1)(2)見解析

【解析】

(1)設(shè)點(diǎn)為曲線上任一點(diǎn),由列方程整理即可。

(2)先判斷直線斜率存在,設(shè)直線的方程為,設(shè),聯(lián)立直線與橢圓方程,表示出,由直線斜率之積為得到,化簡(jiǎn)得到,求得,問題得解。

(1)設(shè)點(diǎn)為曲線上任一點(diǎn),

則依題意得:,

化簡(jiǎn)得:

曲線的軌跡方程為:.

(2)一定經(jīng)過一定點(diǎn).

設(shè),當(dāng)直線的斜率不存在時(shí),設(shè)的方程為,

則:,

,不合題意.

故直線的斜率存在,

設(shè)直線的方程為,并代入橢圓方程,

整理得:,①

得:.②

設(shè),則是方程①的兩根,由根與系數(shù)的關(guān)系得:

,,

得:,

整理得:

又因?yàn)?/span>,所以

此時(shí)直線的方程為.

所以直線恒過一定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)設(shè),討論的單調(diào)性;

(2)若不等式恒成立,其中為自然對(duì)數(shù)的底數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正整數(shù)數(shù)列滿足,對(duì)于給定的正整數(shù),若數(shù)列中首個(gè)值為1的項(xiàng)為,我們定義,則_____.設(shè)集合,則集合中所有元素的和為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的方程為:

1)過點(diǎn)作圓的切線,求切線方程

2)過點(diǎn)作直線與圓交于、,且,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長(zhǎng)方形中,的中點(diǎn),為線段上一動(dòng)點(diǎn).現(xiàn)將沿折起,形成四棱錐.

(1)若重合,且(如圖2).證明:平面;

(2)若不與重合,且平面平面 (如圖3),設(shè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班有50名學(xué)生,男女人數(shù)不相等。隨機(jī)詢問了該班5名男生和5名女生的某次數(shù)學(xué)測(cè)試成績(jī),用莖葉圖記錄如下圖所示,則下列說法一定正確的是( )

A. 這5名男生成績(jī)的標(biāo)準(zhǔn)差大于這5名女生成績(jī)的標(biāo)準(zhǔn)差。

B. 這5名男生成績(jī)的中位數(shù)大于這5名女生成績(jī)的中位數(shù)。

C. 該班男生成績(jī)的平均數(shù)大于該班女生成績(jī)的平均數(shù)。

D. 這種抽樣方法是一種分層抽樣。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列四個(gè)命題:

①“相似三角形周長(zhǎng)相等”的否命題;

②“若,則”的逆命題;

③“若,則”的否命題;

④“若,則方程有實(shí)根”的逆否命題;

其中真命題的個(gè)數(shù)是( )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),,點(diǎn)為曲線上任意一點(diǎn)且滿足.

(1)求曲線的方程;

(2)設(shè)曲線軸交于、兩點(diǎn),點(diǎn)是曲線上異于、的任意一點(diǎn),直線、分別交直線于點(diǎn)、.求證:以為直線的圓軸交于定點(diǎn),并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案