【題目】《九章算術》中的“兩鼠穿墻題”是我國數(shù)學的古典名題:“今有垣厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進一尺,以后每天加倍;小老鼠第一天也進一尺,以后每天減半.”如果墻足夠厚,Sn為前n天兩只老鼠打洞長度之和,則Sn=尺.

【答案】
【解析】解:由題意可知:大老鼠每天打洞的距離是以1為首項,以2為公比的等比數(shù)列, 前n天打洞之和為 =2n﹣1,
同理,小老鼠每天打洞的距離 =2﹣
∴Sn=2n﹣1+2﹣ = ,
故答案為:
根據(jù)題意可知,大老鼠和小老鼠打洞的距離為等比數(shù)列,根據(jù)等比數(shù)列的前n項和公式,求得Sn

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥側面BB1CC1

(1)求直線C1B與底面ABC所成角的正弦值;
(2)在棱CC1(不包含端點C,C1)上確定一點E的位置,使得EA⊥EB1(要求說明理由).
(3)在(2)的條件下,若AB= ,求二面角A﹣EB1﹣A1的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市準備實施天然氣價格階梯制,現(xiàn)提前調查市民對天然氣價格階梯制的態(tài)度,隨機抽查了50名市民,現(xiàn)將調查情況整理成了被調查者的頻率分布直方圖(如圖)和贊成者的頻數(shù)表如下:

(Ⅰ)若從年齡在的被調查者中各隨機選取2人進行調查,求所選取的4人中至少有2人對天然氣價格階梯制持贊成態(tài)度的概率;

(Ⅱ)若從年齡在的被調查者中各隨機選取2人進行調查,記選取的4人中對天然氣價格實施階梯制持不贊成態(tài)度的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的奇偶性;

(2)當時,求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I) 討論函數(shù)的單調區(qū)間;

(II)當時,若函數(shù)在區(qū)間上的最大值為3,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面四邊形ABCD中,E為BC的中點,且EA=1,ED= .若 =﹣1,則 的值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列{an}的前n項和為Sn , 點(an , Sn)(n∈N*)都在函數(shù)f(x)= 的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an3n , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,E是DD1的中點.

(1)求證:BD1∥平面AEC.
(2)求異面直線BC1與AC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象過原點,且在處取得極值,直線與曲線在原點處的切線互相垂直.

求函數(shù)的解析式;

若對任意實數(shù)的,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案