如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求證: EC⊥CD;
(2)求證:AG∥平面BDE;
(3)求:幾何體EG-ABCD的體積.
(1)證明過程詳見解析;(2)證明過程詳見解析;(3)
解析試題分析:(1)要證 ,只要證平面;而由題設平面平面且 ,所以平面,結(jié)論得證;
(2)過G作GN⊥CE交BE于M,連 DM,由題設可證四邊形為平行四邊形,所以有
從而由直線與平面平行的判定定理,可證AG∥平面BDE;
(3)欲求幾何體EG-ABCD的體積,可先將該幾何體分成一個四棱錐和三棱錐 .
試題解析:
(1)證明:由平面ABCD⊥平面BCEG,
平面ABCD∩平面BCEG=BC, 平面BCEG,
EC⊥平面ABCD,3分
又CD平面BCDA, 故 EC⊥CD4分
(2)證明:在平面BCDG中,過G作GN⊥CE交BE于M,連DM,則由已知知;MG=MN,MN∥BC∥DA,且
MG∥AD,MG=AD, 故四邊形ADMG為平行四邊形,
AG∥DM6分
∵DM平面BDE,AG平面BDE, AG∥平面BDE8分
(3)解: 10分
12分
考點:1、直線與平面垂直、平行的判定與性質(zhì);2、空間幾何體的體積.
科目:高中數(shù)學 來源: 題型:解答題
如圖1,在Rt△ABC中,∠ABC=90°,D為AC中點,于(不同于點),延長AE交BC于F,將△ABD沿BD折起,得到三棱錐,如圖2所示.
(1)若M是FC的中點,求證:直線//平面;
(2)求證:BD⊥;
(3)若平面平面,試判斷直線與直線CD能否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,是圓的直徑,點是圓上異于的點,直線 分別為的中點。
(1)記平面與平面的交線為,試判斷與平面的位置關系,并加以說明;
(2)設(1)中的直線與圓的另一個交點為,且點滿足,記直線
平面所成的角為異面直線與所成的銳角為,二面角的大小為
①求證:
②當點為弧的中點時,,求直線與平面所成的角的正弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.
(1)求證:AF∥平面BDE;
(2)求證:CF⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐PABCD中,M、N分別是側(cè)棱PA和底面BC邊的中點,O是底面平行四邊形ABCD的對角線AC的中點.求證:過O、M、N三點的平面與側(cè)面PCD平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點.
求證:(1)平面EFG∥平面ABC;(2)BC⊥SA.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com