如圖,在四棱錐中,底面為矩形,平面,,,是中點(diǎn),為上一點(diǎn).
(1)求證:平面;
(2)當(dāng)為何值時(shí),二面角為.
(1)詳見解析;(2)
解析試題分析:(1)再由等腰三角形中線即為高線可得,由平面可得,由為矩形可得,根據(jù)線面垂直的判定定理可得平面,從而可得。再由等腰三角形中線即為高線可得,由線面垂直的判定定理可證得平面。(2)(空間向量法)以以為坐標(biāo)原點(diǎn),、、所在直線為,,軸建立空間直角坐標(biāo)系。設(shè)?傻酶鼽c(diǎn)的坐標(biāo),從而可得個(gè)向量的坐標(biāo),根據(jù)向量垂直數(shù)量積為0先兩個(gè)面的法向量.因?yàn)閮煞ㄏ蛄克傻慕桥c二面角相等或互補(bǔ),所以兩法向量夾角的余弦值的絕對(duì)值等于。從而可得的值。
證明⑴ 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2a/3/3ujoz.png" style="vertical-align:middle;" />平面,平面,
所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/03/3/fza0d.png" style="vertical-align:middle;" />是矩形,所以.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/31/2/onp1c.png" style="vertical-align:middle;" />,所以平面,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/12/5/qnpvv.png" style="vertical-align:middle;" />平面,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/28/2/eahag1.png" style="vertical-align:middle;" />,是中點(diǎn),所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5c/6/qevpt3.png" style="vertical-align:middle;" /> 所以平面.
⑵
解:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2a/3/3ujoz.png" style="vertical-align:middle;" />平面,,
所以以為坐標(biāo)原點(diǎn),、、所在直線為,,軸建立空間直角坐標(biāo)系,設(shè),
則,,,.
所以,.
設(shè)平面的法向量為,則所以
令,得,,
所以.
平面的法向量為.
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(2011•重慶)如圖,在四面體ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°
(Ⅰ)若AD=2,AB=2BC,求四面體ABCD的體積.
(Ⅱ)若二面角C﹣AB﹣D為60°,求異面直線AD與BC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2014·海淀模擬)如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中點(diǎn).
(1)求證:A1B∥平面AEC1.
(2)求證:B1C⊥平面AEC1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)面底面.
(Ⅰ)若,分別為,中點(diǎn),求證:∥平面;
(Ⅱ)求證:;
(Ⅲ)若,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱ABCD—A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明B1C1⊥CE;
(2)求二面角B1CEC1的正弦值;
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,長(zhǎng)方體中,,G是上的動(dòng)點(diǎn)。
(l)求證:平面ADG;
(2)判斷與平面ADG的位置關(guān)系,并給出證明;
(3)若G是的中點(diǎn),求二面角G-AD-C的大;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,O為AC與BD的交點(diǎn),AB^平面PAD,△PAD是正三角形,
DC//AB,DA=DC=2AB.
(1)若點(diǎn)E為棱PA上一點(diǎn),且OE∥平面PBC,求的值;
(2)求證:平面PBC^平面PDC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求證: EC⊥CD;
(2)求證:AG∥平面BDE;
(3)求:幾何體EG-ABCD的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com