已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)當(dāng),且時,證明:

(1)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,;(2)證明見解析.

解析試題分析:(1)先求出,再根據(jù),求得函數(shù)的單調(diào)區(qū)間和極值;(2)構(gòu)造函數(shù),利用最值即可證明不等式.
試題解析:(1)函數(shù)的定義域為,所以
,得
當(dāng)變化時,,的變化情況如下表:











極大值

由表可知:的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是
所以處取得極大值,
(2)當(dāng)時,
,則
上單調(diào)遞減,∴,即
考點:1、利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;2、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,試用含的式子表示,并討論的單調(diào)區(qū)間;
(2)若有零點,,且對函數(shù)定義域內(nèi)一切滿足的實數(shù)
①求的表達式;
②當(dāng)時,求函數(shù)的圖像與函數(shù)的圖像的交點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;  
(2)設(shè),求上的最大值;
(3)試證明:對任意,不等式都成立(其中是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中b≠0.
(1)當(dāng)b>時,判斷函數(shù)在定義域上的單調(diào)性:
(2)求函數(shù)的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)若存在,使得,求a的取值范圍;
(2)若有兩個不同的實數(shù)解,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)對于函數(shù)中的任意實數(shù)x,在上總存在實數(shù),使得成立,求實數(shù)的取值范圍
(2)設(shè)函數(shù),當(dāng)在區(qū)間內(nèi)變化時,
(1)求函數(shù)的取值范圍;
(2)若函數(shù)有零點,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)上的最大值與最小值;
(2)若時,函數(shù)的圖像恒在直線上方,求實數(shù)的取值范圍;
(3)證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中m,a均為實數(shù).
(1)求的極值;
(2)設(shè),若對任意的,恒成立,求的最小值;
(3)設(shè),若對任意給定的,在區(qū)間上總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處有極大值
(1)求的解析式;
(2)求的單調(diào)區(qū)間;

查看答案和解析>>

同步練習(xí)冊答案