【題目】如圖,某沿海地區(qū)計劃鋪設(shè)一條電纜聯(lián)通A,B兩地,A地位于東西方向的直線MN上的陸地處,B地位于海上一個燈塔處,在A地用測角器測得,在A地正西方向4km的點C處,用測角器測得.擬定鋪設(shè)方案如下:在岸MN上選一點P,先沿線段AP在地下鋪設(shè),再沿線段PB在水下鋪設(shè).預(yù)算地下、水下的電纜鋪設(shè)費用分別為2萬元/km和4萬元/km,設(shè),,鋪設(shè)電纜的總費用為萬元.
(1)求函數(shù)的解析式;
(2)試問點P選在何處時,鋪設(shè)的總費用最少,并說明理由.
【答案】(1),其中(2)當點P選在距離A地處時,鋪設(shè)的總費用最少,詳見解析.
【解析】
(1)過B作MN的垂線,垂足為D,根據(jù)題中條件,得到,,由,得到,,,進而得到,化簡即可得出結(jié)果;
(2)根據(jù)(1)的結(jié)果,先設(shè),,對求導,用導數(shù)的方法研究其單調(diào)性,即可求出最值.
(1)過B作MN的垂線,垂足為D.
在中,,則.
在中,,
所以.
因為,所以,
所以.
由,則,.
由,得.
所以,
即,其中.
(2)設(shè),,
則.
令,得,所以.
列表如下:
0 | |||
h(θ) | ↘ | 極小值 | ↗ |
所以當時,取得最小值,
所以取得最小值,此時.
答:當點P選在距離A地處時,鋪設(shè)的總費用最少,且為萬元.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是以d為公差的等差數(shù)列,{bn}數(shù)列是以q為公比的等比數(shù)列.
(1)若數(shù)列{bn}的前n項和為Sn,且a1=b1=d=2,S3<a1003+5b2﹣2010,求整數(shù)q的值;
(2)在(1)的條件下,試問數(shù)列中是否存在一項bk,使得bk恰好可以表示為該數(shù)列中連續(xù)p(p∈N,p≥2)項的和?請說明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s﹣r)是(t﹣r)的約數(shù)),求證:數(shù)列{bn}中每一項都是數(shù)列{an}中的項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減,②存在常數(shù),使其值域為,則稱函數(shù)是函數(shù)的“漸近函數(shù)”.
(1)判斷函數(shù)是不是函數(shù)的“漸近函數(shù)”,說明理由;
(2)求證:函數(shù)不是函數(shù)的“漸近函數(shù)”;
(3)若函數(shù),,求證:當且僅當時,是的“漸近函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列各項不為0,前項和為.
(1)若,,求數(shù)列的通項公式;
(2)在(1)的條件下,已知,分別求和的表達式;
(3)證明:是等差數(shù)列的充要條件是:對任意,都有:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列1,1,1,2,2,1,2,4,3,1,2,4,8,4,1,2,4,8,16,5,…,其中第一項是,第二項是1,接著兩項為,,接著下一項是2,接著三項是,,,接著下一項是3,依此類推.記該數(shù)列的前項和為,則滿足的最小的正整數(shù)的值為( )
A.65B.67C.75D.77
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在區(qū)間上的最小值;
(2)令是函數(shù)圖象上任意兩點,且滿足求實數(shù)的取值范圍;
(3)若,使成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,規(guī)定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低元,根據(jù)市場調(diào)查,銷售商一次訂購不會超過600件.
(1)設(shè)一次訂購件,服裝的實際出廠單價為元,寫出函數(shù)的表達式;
(2)當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)分別求曲線的極坐標方程和曲線的直角坐標方程;
(Ⅱ)設(shè)直線交曲線于,兩點,交曲線于,兩點,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《九章算術(shù)》中記載了有關(guān)特殊幾何體的定義:陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,塹堵指底面是直角三角形,且側(cè)棱垂直于底面的三棱柱.
(1)某塹堵的三視圖,如圖1,網(wǎng)格中的每個小正方形的邊長為1,求該塹堵的體積;
(2)在塹堵中,如圖2,,若,當陽馬的體積最大時,求二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com