【題目】在平面直角坐標(biāo)系中,已知點A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.
【答案】
(1)解:由題意可得 =(cosα﹣2,sinα), =(cosα,sinα﹣2),
∵ ,∴(cosα﹣2)2+sin2α=cos2α+(sinα﹣2)2,且α∈(0,π).
整理可得tanα=1,α=
(2)解:若 ,則 (cosα﹣2)cosα+sinα(sinα﹣2)= ,
化簡得 sinα+cosα= ,平方可得 1+2sinαcosα= ,2sinαcosα=﹣ ,
∴ = =2sinαcosα=﹣ .
【解析】(1)求得 和 的坐標(biāo),再根據(jù) 以及α∈(0,π),求得tanα 的值可得α 的值.(2)由 ,求得 sinα+cosα= ,平方可得2sinαcosα=﹣ ,再根據(jù) =2sinαcosα,求得結(jié)果.
【考點精析】解答此題的關(guān)鍵在于理解同角三角函數(shù)基本關(guān)系的運用的相關(guān)知識,掌握同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與拋物線相切于點.
(1)求實數(shù)的值;
(2)求以點為圓心,且與拋物線的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正三棱柱ABC﹣A1B1C1中,點D是BC的中點.
(1)求證:A1C∥平面AB1D;
(2)設(shè)M為棱CC1的點,且滿足BM⊥B1D,求證:平面AB1D⊥平面ABM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是_____________.
①.如果命題“”與命題“或”都是真命題,那么命題一定是真命題.
②.命題,則
③.命題“若,則”的否命題是:“若,則”
④.特稱命題 “,使”是真命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx﹣ax(a∈R).
(1)若直線y=3x﹣1是函數(shù)f(x)圖象的一條切線,求實數(shù)a的值;
(2)若函數(shù)f(x)在[1,e2]上的最大值為1﹣ae(e為自然對數(shù)的底數(shù)),求實數(shù)a的值;
(3)若關(guān)于x的方程ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)有且僅有唯一的實數(shù)根,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)巨著,內(nèi)容極為豐富,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何.”意思是:“5人分取5錢,各人所得錢數(shù)依次成等差數(shù)列,其中前2人所得錢數(shù)之和與后3人所得錢數(shù)之和相等.”,則其中分得錢數(shù)最多的是( )
A. 錢
B.1錢
C. 錢
D. 錢
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中曲線 經(jīng)伸縮變換 后得到曲線C2 , 在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C3的極坐標(biāo)方程為 .
(1)求曲線C2的參數(shù)方程和C3的直角坐標(biāo)方程;
(2)設(shè)M為曲線C2上的一點,又M向曲線C3引切線,切點為N,求|MN|的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com