(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.(不等式選做題)不等式的解集是   
B.(幾何證明選做題) 如圖,以AB=4為直徑的圓與△ABC的兩邊分別交于E,F(xiàn)兩點(diǎn),∠ACB=60°,則EF=   
C.(坐標(biāo)系與參數(shù)方程選做題) 在極坐標(biāo)中,已知點(diǎn)P為方程ρ(cosθ+sinθ)=1所表示的曲線(xiàn)上一動(dòng)點(diǎn),Q(2,),則|PQ|的最小值為   
【答案】分析:A 由不等式可得 ,由此求出不等式的解集.
B 由題意得CA=2CE,再由圓內(nèi)接四邊形性質(zhì)可得∠CFE=∠CBA,∠C=∠C,故有△CEF∽△CBA,對(duì)應(yīng)邊成比列,從而求出EF 的值.
C  點(diǎn)P為方程化為直角坐標(biāo)方程,把點(diǎn)的極坐標(biāo)化為直角坐標(biāo),|PQ|的最小值為點(diǎn)Q到直線(xiàn)的距離d,由點(diǎn)到直線(xiàn)的距離公式求得d的值.
解答:解:A 由不等式可得
,解得 x≤0.
故答案為 (-∞,0].
B  如圖,連接AE,∵AB為圓的直徑,∴∠AEB=∠AEC=90°.
又∵∠ACB=60°,∴CA=2CE,由圓內(nèi)接四邊形性質(zhì)易得:
∠CFE=∠CBA (由圓內(nèi)接四邊形對(duì)角互補(bǔ),同角的補(bǔ)角相等得到的).
又因?yàn)椤螩=∠C,△CEF∽△CAB,∴,
又∵AB=4,∴EF=2.
故答案為 2.
C  點(diǎn)P為方程ρ(cosθ+sinθ)=1 即 x+y-1=0,表示一條直線(xiàn),Q(2,)的直角坐標(biāo)為(1,),
故|PQ|的最小值為點(diǎn)Q到直線(xiàn)的距離d,
d==,
故答案為
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,圓內(nèi)接四邊形的性質(zhì)、相似三角形的性質(zhì),把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)不等式|x+1|≥|x+2|的解集為
 

B.(幾何證明選做題)如圖所示,過(guò)⊙O外一點(diǎn)P作一條直線(xiàn)與⊙O交于A,B兩點(diǎn),
已知PA=2,點(diǎn)P到⊙O的切線(xiàn)長(zhǎng)PT=4,則弦AB的長(zhǎng)為
 

C.(坐標(biāo)系與參數(shù)方程選做題)若直線(xiàn)3x+4y+m=0與圓
x=1+cosθ
y=-2+sinθ
(θ為參數(shù))沒(méi)有公共點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(三選一,考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系中圓C的參數(shù)方程為
x=1+2cosθ
y=
3
+2sinθ
(θ為參數(shù)),則圓C的普通方程為
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式選講選做題)設(shè)函數(shù)f(x)=|2x+1|-|x-4|,則不等式f(x)>2的解集為
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(幾何證明選講選做題) 如圖所示,等腰三角形ABC的底邊AC長(zhǎng)為6,其外接圓的半徑長(zhǎng)為5,則三角形ABC的面積是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
(A)(幾何證明選做題)如圖,CD是圓O的切線(xiàn),切點(diǎn)為C,點(diǎn)B在圓O上,BC=2,∠BCD=30°,則圓O的面積為

(B)(極坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)方程ρ=2sinθ+4cosθ表示的曲線(xiàn)截θ=
π
4
(ρ∈R)
所得的弦長(zhǎng)為
3
2
3
2
;
(C)(不等式選做題)  不等式|2x-1|<|x|+1解集是
(0,2)
(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線(xiàn),PB交AC于點(diǎn)E,交⊙O于點(diǎn)D.若PA=PE,∠ABC=60°,PD=1,PB=9,則EC=
4
4

B. P為曲線(xiàn)C1
x=1+cosθ
y=sinθ
,(θ為參數(shù))上一點(diǎn),則它到直線(xiàn)C2
x=1+2t
y=2
(t為參數(shù))距離的最小值為
1
1

C.不等式|x2-3x-4|>x+1的解集為
{x|x>5或x<-1或-1<x<3}
{x|x>5或x<-1或-1<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝卸}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分.)
(A)(選修4-4坐標(biāo)系與參數(shù)方程)曲線(xiàn)
x=cosα
y=a+sinα
(α為參數(shù))與曲線(xiàn)ρ2-2ρcosθ=0的交點(diǎn)個(gè)數(shù)為
 
個(gè).
(B)(選修4-5不等式選講)若不等式|x+1|+|x-3| ≥a+
4
a
對(duì)任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案