(本小題滿分13分)
張先生家住H小區(qū),他工作在C科技園區(qū),從家開車到公司上班路上有L1L2兩條路線(如圖),L1路線上有A1A2,A3三個路口,各路口遇到紅燈的概率均為;L2路線上有B1,B2兩個路口,各路口遇到紅燈的概率依次為,
(Ⅰ)若走L1路線,求最多遇到1次紅燈的概率;
(Ⅱ)若走L2路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助張先生分析上述兩條路線中,選擇哪條上班路線更好些,并說明理由
解:(Ⅰ)設(shè)走L1路線最多遇到1次紅燈為A事件,則

所以走L1路線,最多遇到1次紅燈的概率為.……………………………3分
(Ⅱ)依題意,的可能取值為0,1,2.      ………………………………4分
, ,
.   ……………………………………………………………7分
隨機變量的分布列為:

0
1
2
P



.………………………………………………9分
(Ⅲ)設(shè)選擇L1路線遇到紅燈次數(shù)為,隨機變量服從二項分布,
所以.                   ………………………………………12分
因為,所以選擇L2路線上班更好.………………………………………13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為,且各株大樹是否成活互不影響.求移栽的4株大樹中:
(1)兩種大樹各成活1株的概率;
(2)成活的株數(shù)的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某地區(qū)對12歲兒童瞬時記憶能力進行調(diào)查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.
    視覺     
視覺記憶能力
偏低
中等
偏高
超常
聽覺
記憶
能力
偏低
0
7
5
1
中等
1
8
3

偏高
2

0
1
超常
0
2
1
1
由于部分數(shù)據(jù)丟失,只知道從這40位學(xué)生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
(I)試確定、的值;
(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生的概率;
(III)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機變量的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)校隨機抽取部分新生調(diào)查其上學(xué)所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)所需時間的范圍是,樣本數(shù)據(jù)分組為,,,,.
(Ⅰ)求直方圖中的值;
(Ⅱ)如果上學(xué)所需時間不少于1小時的學(xué)生可申請在學(xué)校住宿,請估計學(xué)校600名新生中有多少名學(xué)生可以申請住宿;
(Ⅲ)從學(xué)校的新生中任選4名學(xué)生,這4名學(xué)生中上學(xué)所需時間少于20分鐘的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中新生上學(xué)所需時間少于20分鐘的頻率作為每名學(xué)生上學(xué)所需時間少于20分鐘的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線yax2bxc(a≠0)的對稱軸在y軸的左側(cè),其中a、b、c∈{-3,-2,-1,0,1,2,3},在這些拋物線中,記隨機變量ξ=“|ab|的取值”,則ξ的期望Eξ為 (  )
A.8/9B.3/5C.2/5D.1/3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

四個大小相同的小球分別標有數(shù)字1、1、2、3,把它們放在一個盒子里,從中任意摸出兩個小球,它們所標有的數(shù)字分別為,記,則隨機變量的數(shù)學(xué)期望為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本題12分)已知從“神七”飛船帶回的某種植物種子每粒成功發(fā)芽的概率都為,某
植物研究所進行該種子的發(fā)芽實驗,每次實驗種一粒種子, 每次實驗結(jié)果相互獨立. 假定某
次實驗種子發(fā)芽則稱該次實驗是成功的,如果種子沒有發(fā)芽,則稱該次實驗是失敗的.若該
研究所共進行四次實驗, 設(shè)表示四次實驗結(jié)束時實驗成功的次數(shù)與失敗的次數(shù)之差的絕對
值.
⑴ 求隨機變量的分布列及的數(shù)學(xué)期望;
⑵ 記“不等式的解集是實數(shù)集”為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)盒子內(nèi)有大小相同的9個球,其中2個紅色小球,3個白色小球,4個黑色小球,規(guī)定取出1紅色小球得到1分, 取出1白色小球得到0分, 取出1個黑色小球得到-1分,現(xiàn)從盒子中任取3個小球。
(Ⅰ)求取出的3個球顏色互不相同的概率;
(Ⅱ)求取出的3個球得分之和恰好為1分的概率;
(Ⅲ)設(shè)ξ為取出的3個球中白色球的個數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
為了評估天氣對大運會的影響,制定相應(yīng)預(yù)案,深圳市氣象局通過對最近50多年的氣象數(shù)據(jù)資料的統(tǒng)計分析,發(fā)現(xiàn)8月份是我市雷電天氣高峰期,在31天中平均發(fā)生雷電14.57天(如圖7).如果用頻率作為概率的估計值,并假定每一天發(fā)生雷電的概率均相等,且相互獨立.
(1)求在大運會開幕(8月12日)后的前3天比賽中,恰好有2天發(fā)生雷電天氣的概率(精確到0.01);
(2)設(shè)大運會期間(8月12日至23日,共12天),發(fā)生雷電天氣的天數(shù)為,求的數(shù)學(xué)期望和方差.

查看答案和解析>>

同步練習(xí)冊答案