【題目】對于函數(shù),若存在實數(shù),使得成立,則x0稱為f(x)的“不動點”.

(1)設(shè)函數(shù),求的不動點;

(2)設(shè)函數(shù),若對于任意的實數(shù)b,函數(shù)f(x)恒有兩相異的不動點,求實數(shù)a的取值范圍;

(3)設(shè)函數(shù)定義在上,證明:若存在唯一的不動點,則也存在唯一的不動點.

【答案】(1)的不動點為-1和2;(2);(3)詳見解析.

【解析】

1)設(shè)x為不動點,則有,得,解方程即可.

2)證法一:設(shè)不動點,則,否則設(shè),則也為不動點,與已知存在唯一的不動點矛盾.由此能證明若存在唯一的不動點,則也存在唯一的不動點.

證法二:設(shè)a的唯一不動點,.設(shè),則,由唯一性,得到,從而a的不動點.如果f有其它的不動點c,則c也是的不動點,由唯一性得,由此能證明若存在唯一的不動點,則也存在唯一的不動點.

解:(1)由函數(shù),得

解得,

的不動點為-12

2)由得:

由已知,此方程有相異二實根,恒成立,即

對任意恒成立.

∴實數(shù)a的取值范圍是

證明:(3)證法一:設(shè)函數(shù)定義在上,存在唯一的不動點,

首先若不動點,則

否則設(shè),則也為不動點,

不動點不唯一,與已知存在唯一的不動點矛盾.

有不動點時,的不動點也是的不動點,

∴若存在唯一的不動點,則也存在唯一的不動點.

證法二:設(shè)a的唯一不動點,

設(shè),則

b也是的不動點.

由唯一性,得到,∴,從而a的不動點.

如果f有其它的不動點c,則c也是的不動點,

由唯一性得,∴a的唯一不動點.

故若存在唯一的不動點,則也存在唯一的不動點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面上,點,點在單位圓上且 .

(1)若點,求的值:

(2)若,四邊形的面積用表示,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/

6

11

20

27

57

77

經(jīng)計算得: , , ,

,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測溫度為35C時該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計為

=;相關(guān)指數(shù)R2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個結(jié)論:

①函數(shù)是偶函數(shù);

②當時,函數(shù)的值域是;

③若扇形的周長為,圓心角為,則該扇形的弧長為6 cm;

④已知定義域為的函數(shù),當且僅當時,成立.

則上述結(jié)論中正確的是______(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù)a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,則a的取值范圍為(
A.(﹣∞,2)
B.(﹣∞,2]
C.(2,+∞)
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寶寶的健康成長是媽媽們最關(guān)心的問題,父母親為嬰兒選擇什么品牌的奶粉一直以來都是育嬰中的一個重要話題,為了解過程奶粉的知名度和消費者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:

(1)根據(jù)給出的這兩年銷量的管狀圖,對該超市這兩年品牌奶粉銷量的前五強進行排名;

(2)分別計算這5個品牌奶粉2016年所占總銷量(僅指這5個品牌奶粉的總銷量)的百分比(百分數(shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號內(nèi);

(3)已知該超市2014年飛鶴奶粉的銷量為(單位:罐),試以3年的銷量得出銷量關(guān)于年份的線性回歸方程,并據(jù)此預(yù)測2017年該超市飛鶴奶粉的銷量.

相關(guān)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,內(nèi)角所對的邊分別為,已知

(Ⅰ)求角的值;

(Ⅱ)記,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:)的影響,對近年的年宣傳費和年銷售量作了初步統(tǒng)計和處理,得到的數(shù)據(jù)如下:

年宣傳費(單位:萬元)

年銷售量(單位:

,.

(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;

(2)求出關(guān)于的線性回歸方程

(3)若公司計劃下一年度投入宣傳費萬元,試預(yù)測年銷售量的值.

參考公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求不等式的解集;

(2)解關(guān)于的不等式.

查看答案和解析>>

同步練習(xí)冊答案