【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD與
平面ABCD所成的角依次是 和 ,AP=2,E、F依次是PB、PC的中點(diǎn);
(1)求異面直線EC與PD所成角的大;(結(jié)果用反三角函數(shù)值表示)
(2)求三棱錐P﹣AFD的體積.
【答案】
(1)解:分別以AB、AD、AP所在直線為x、y、z軸建立空間直角坐標(biāo)系.
∵AP=2, ,∠PDA= ,
∴AB=2,AD=4,則P(0,0,2),D(0,4,0),E(1,0,1),C(2,4,0),
, .
∴cos< >= = = .
∴異面直線EC與PD所成角的大小為
(2)解:VP﹣AFD=VP﹣ACD﹣VF﹣ACD= = .
【解析】(1)分別以AB、AD、AP所在直線為x、y、z軸建立空間直角坐標(biāo)系.利用向量 與 所成角求得異面直線EC與PD所成角的大;(2)直接利用VP﹣AFD=VP﹣ACD﹣VF﹣ADC求解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解異面直線及其所成的角(異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,an= ,n=2,3,4,….
(1)求a2 , a3 , a4 , a5的值;
(2)設(shè)bn= +1,n∈N*,求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)公式;
(3)對任意的m≥2,m∈N*,在數(shù)列{an}中是否存在連續(xù)的2m項(xiàng)構(gòu)成等差數(shù)列?若存在,寫出這2m項(xiàng),并證明這2m項(xiàng)構(gòu)成等差數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解市民在購買食物時看營養(yǎng)說明與性別的關(guān)系,現(xiàn)在社會上隨機(jī)詢問了100名市民,得到如下2×2列聯(lián)表:
(1)是否有95%的把握認(rèn)為:“性別與讀營養(yǎng)說明有關(guān)系”,并說明理由;
(2)把頻率當(dāng)概率,若從社會上的男性市民中隨機(jī)抽取3位,記這3位中讀營養(yǎng)說明的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).
男性 | 女性 | 總計 | |
讀營養(yǎng)說明 | 40 | 20 | 60 |
不讀營養(yǎng)說明 | 20 | 20 | 40 |
總計 | 60 | 40 | 100 |
參考公式和數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F(xiàn)1 , F2分別是橢圓C: =1(a>b>0)的左、右焦點(diǎn),且焦距為2 ,動弦AB平行于x軸,且|F1A|+|F1B|=4.
(1)求橢圓C的方程;
(2)若點(diǎn)P是橢圓C上異于點(diǎn) 、A,B的任意一點(diǎn),且直線PA、PB分別與y軸交于點(diǎn)M、N,若MF2、NF2的斜率分別為k1、k2 , 求證:k1k2是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合Ma={f(x)|存在正實(shí)數(shù)a,使得定義域內(nèi)任意x都有f(x+a)>f(x)}.
(1)若f(x)=2x﹣x2 , 試判斷f(x)是否為M1中的元素,并說明理由;
(2)若 ,且g(x)∈Ma , 求a的取值范圍;
(3)若 (k∈R),且h(x)∈M2 , 求h(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義f(x)={x}(其中{x}表示不小于x的最小整數(shù))為“取上整函數(shù)”,例如{2.1}=3,{4}=4.以下關(guān)于“取上整函數(shù)”性質(zhì)的描述,正確的是( ) ①f(2x)=2f(x);
②若f(x1)=f(x2),則x1﹣x2<1;
③任意x1 , x2∈R,f(x1+x2)≤f(x1)+f(x2);
④ .
A.①②
B.①③
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C的中心為原點(diǎn)O,F(xiàn)(﹣2 ,0)為C的左焦點(diǎn),P為C上一點(diǎn),滿足|OP|=|OF|且|PF|=4,則橢圓C的方程為( )
A. =1
B. =1
C. =1
D. =1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·江蘇)已知集合X={1,2,3},Yn={1,2,3...,n}(nN*),Sn={(a,b)|a整除b或b整除a, aX, bYn}, 令f(n)表示集合Sn所包含元素的個數(shù)。
(1)寫出f(6)的值;
(2)當(dāng)n≥6時,寫出f(n)的表達(dá)式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)為 , 是橢圓上一點(diǎn),若 , .
(1)求橢圓的方程;
(2)直線l過右焦點(diǎn) (不與x軸重合)且與橢圓相交于不同的兩點(diǎn)A,B,在x軸上是否存在一個定點(diǎn)P(x0 , 0),使得 的值為定值?若存在,寫出P點(diǎn)的坐標(biāo)(不必求出定值);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com