若函數(shù)滿足:在定義域內(nèi)存在實數(shù),使(k為常數(shù)),則稱“f(x)關(guān)于k可線性分解”.
(Ⅰ)函數(shù)是否關(guān)于1可線性分解?請說明理由;
(Ⅱ)已知函數(shù)關(guān)于可線性分解,求的取值范圍;
(Ⅲ)證明不等式:

(Ⅰ)是關(guān)于1可線性分解;(Ⅱ)a的取值范圍是;(Ⅲ)詳見解析.

解析試題分析:(Ⅰ)函數(shù)是否關(guān)于1可線性分解,關(guān)鍵是看是否存在使得成立,若成立,是關(guān)于1可線性分解,否則不是關(guān)于1可線性分解,故看是否有解,構(gòu)造函數(shù),看它是否有零點,而,觀察得,,有根的存在性定理可得存在,使;(Ⅱ)先確定定義域為,函數(shù)關(guān)于可線性分解,即存在,使,即有解,整理得有解,即,從而求出的取值范圍;(Ⅲ)證明不等式:,當(dāng)時,,對求導(dǎo),判斷最大值為,可得,分別令,疊加可得證結(jié)論.
試題解析:(Ⅰ)函數(shù)的定義域是R,若是關(guān)于1可線性分解,
則定義域內(nèi)存在實數(shù),使得
構(gòu)造函數(shù)

,上是連續(xù)的,
上至少存在一個零點.
即存在,使.             4分
(Ⅱ)的定義域為
由已知,存在,使

整理,得,即
,所以
,得
∴a的取值范圍是.                  9分
(Ⅲ)由(Ⅱ)知,a =1,,
當(dāng)時,,所以的單調(diào)遞增區(qū)間是,當(dāng)時,,所以的單調(diào)遞減區(qū)間是,因此時,的最大值為,所以,即,因此得:,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)).
(1)求的單調(diào)區(qū)間;
⑵如果是曲線上的任意一點,若以為切點的切線的斜率恒成立,求實數(shù)的最小值;
⑶討論關(guān)于的方程的實根情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若1是函數(shù)的一個零點,求函數(shù)的解析表達式;
(2)試討論函數(shù)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若曲線有三個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù),過曲線上的點的切線方程為.
(1)若時有極值,求的表達式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)求函數(shù)上的最小值;
(2)對一切恒成立,求實數(shù)的取值范圍;
(3)證明:對一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在上的函數(shù),其中為常數(shù).
(1)當(dāng)是函數(shù)的一個極值點,求的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,若,在處取得最大值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)證明:都有。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案