【題目】已知拋物線:)上橫坐標為4的點到焦點的距離為5

1)求拋物線的方程;

2)設直線與拋物線交于不同兩點,若滿足,證明直線恒過定點,并求出定點的坐標.

【答案】1;(2)見解析,.

【解析】

1)求出拋物線的準線方程,利用拋物線定義,可得的方程,即可得出拋物線的方程;

2)方法一:設,,由,進行坐標運算并化簡整理,運用直線的斜率公式和直線方程,以及直線恒過定點的求法,可得所求定點坐標.

方法二:設,,設直線),與拋物線方程聯(lián)立,由韋達定理得到根與系數(shù)的關系,而,則,代入坐標進行運算并解出,進行檢驗后可得直線方程,由此可得直線恒過定點以及定點坐標.

解:(1)拋物線:)的準線方程為

由拋物線的定義得,,

解得,

所以拋物線方程為.

2)方法一:設,,且,皆不為

,

,即,

,

,

直線斜率為,

直線方程為:,

即為,

直線恒過定點,

直線恒過定點,定點坐標為.

方法二:設,

由條件可知直線的斜率不為0,可設直線),

代入,得:,

,,,

,

,

,

,符合,

直線,則直線恒過定點,

直線恒過定點,定點坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某機構(gòu)用“10分制調(diào)查了各階層人士對某次國際馬拉松賽事的滿意度,現(xiàn)從調(diào)查人群中隨機抽取16名,如圖莖葉圖記錄了他們的滿意度分數(shù)(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉):

1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

2)若滿意度不低于9.5分,則稱該被調(diào)查者的滿意度為極滿意,求從這16人中隨機選取3人,至少有2人滿意度是極滿意的概率;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設點在橢圓上,且異于橢圓的上、下頂點,點為直線軸的交點,點軸的負半軸上.若為原點),且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海關對同時從三個不同地區(qū)進口的某種商品進行抽樣檢測,從各地區(qū)進口此種商品的數(shù)量(單位:件)如下表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件進行檢測.

地區(qū)




數(shù)量

50

150

100

1)求這6件樣品中來自各地區(qū)商品的數(shù)量;

2)若在這6件樣品中隨機抽取2件送往甲機構(gòu)進一步檢測,求這2件商品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD和梯形BEFC所在平面互相垂直.,,,,.

1)求證:平面ABE;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《基礎教育課程改革綱要(試行)》將具有良好的心理素質(zhì)列入新課程的培養(yǎng)目標.為加強心理健康教育工作的開展,不斷提高學生的心理素質(zhì),九江市某校高二年級開設了《心理健康》選修課,學分為2分.學校根據(jù)學生平時上課表現(xiàn)給出合格不合格兩種評價,獲得合格評價的學生給予50分的平時分,獲得不合格評價的學生給予30分的平時分,另外還將進行一次測驗.學生將以平時分×40%+測驗分×80%”作為最終得分最終得分不少于60分者獲得學分.

該校高二(1)班選修《心理健康》課的學生的平時分及測驗分結(jié)果如下:

測驗分

[30,40)

[40,50)

[50,60)

[60,70)

[70,80)

[8090)

[90,100]

平時分50分人數(shù)

0

1

1

3

4

4

2

平時分30分人數(shù)

1

1

1

1

1

0

0

1)根據(jù)表中數(shù)據(jù)完成如下2×2列聯(lián)表,并分析是否有95%的把握認為這些學生測驗分是否達到60平時分有關聯(lián)?

選修人數(shù)

測驗分

達到60

測驗分

未達到60

合計

平時分50

平時分30

合計

2)用樣本估計總體,若從所有選修《心理健康》課的學生中隨機抽取5人,設獲得學分人數(shù)為,求的期望.

附:,其中

01

005

0025

001

0005

0001

2706

3841

5024

6635

7879/p>

10828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線上任意一點,,且點為線段的中點.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)若為點關于原點的對稱點,過的直線交曲線、 兩點,直線交直線于點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足f(x2)f(x),且當x∈[1,1]時,f(x)x2.g(x)f(x)kxk,若在區(qū)間[13]內(nèi),函數(shù)g(x)04個不相等實根,則實數(shù)k的取值范圍是(  )

A.(0,+∞)B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,規(guī)定排放時污染物的殘留含量不得超過1%.已知在過濾過程中的污染物的殘留數(shù)量P(單位:毫克/升)與過濾時間t(單位:小時)之間的函數(shù)關系為:為正常數(shù),為原污染物數(shù)量).若前5個小時廢氣中的污染物被過濾掉了90%,那么要能夠按規(guī)定排放廢氣,至少還需要過濾(

A. 小時B. 小時C. 5小時D. 小時

查看答案和解析>>

同步練習冊答案