【題目】《基礎(chǔ)教育課程改革綱要(試行)》將“具有良好的心理素質(zhì)”列入新課程的培養(yǎng)目標.為加強心理健康教育工作的開展,不斷提高學生的心理素質(zhì),九江市某校高二年級開設(shè)了《心理健康》選修課,學分為2分.學校根據(jù)學生平時上課表現(xiàn)給出“合格”與“不合格”兩種評價,獲得“合格”評價的學生給予50分的平時分,獲得“不合格”評價的學生給予30分的平時分,另外還將進行一次測驗.學生將以“平時分×40%+測驗分×80%”作為“最終得分”,“最終得分”不少于60分者獲得學分.
該校高二(1)班選修《心理健康》課的學生的平時分及測驗分結(jié)果如下:
測驗分 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
平時分50分人數(shù) | 0 | 1 | 1 | 3 | 4 | 4 | 2 |
平時分30分人數(shù) | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
(1)根據(jù)表中數(shù)據(jù)完成如下2×2列聯(lián)表,并分析是否有95%的把握認為這些學生“測驗分是否達到60分”與“平時分”有關(guān)聯(lián)?
選修人數(shù) | 測驗分 達到60分 | 測驗分 未達到60分 | 合計 |
平時分50分 | |||
平時分30分 | |||
合計 |
(2)用樣本估計總體,若從所有選修《心理健康》課的學生中隨機抽取5人,設(shè)獲得學分人數(shù)為,求的期望.
附:,其中
0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879/p> | 10.828 |
【答案】(1)有95%的把握認為學生“測驗分是否達到60分”與“平時分”有關(guān)聯(lián);(2)4
【解析】
(1)根據(jù)數(shù)據(jù)填表,然后計算,可得結(jié)果.
(2)根據(jù)計算,可得未獲得分數(shù)的人數(shù),然后可知獲得分數(shù)的概率,依據(jù)二項分布數(shù)學期望的計算方法,可得結(jié)果.
解:(1)根據(jù)表中數(shù)據(jù)統(tǒng)計,可得2x2列聯(lián)表
選修人數(shù) | 測驗分 | 合計 | |
達到60分 | 未達到60分 | ||
平時分50分 | 13 | 2 | 15 |
平時分30分 | 2 | 3 | 5 |
合計 | 15 | 5 | 20 |
,
∴有95%的把握認為學生“測驗分是否達到60分”與“平時分”有關(guān)聯(lián)
(2)分析學生得分,,
,
平時分50分的學生中測驗分只需達到50分,
而平時分30分的學生中測驗分必須達到60分,才能獲得學分
平時分50分的學生測驗分未達到50分的只有1人,
平時分30分的學生測驗分未達到60分的有3人
∴從這些學生中隨機抽取1人,
該生獲得學分的概率為
,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點是正方形對角線的交點,且.
(1)證明:平面;
(2)若側(cè)面與底面垂直,求五面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國“一帶一路”戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住“一帶一路”帶來的機遇, 決定開發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為萬元, 每生產(chǎn)臺,需另投入成本(萬元), 當年產(chǎn)量不足臺時, (萬元); 當年產(chǎn)量不小于臺時 (萬元), 若每臺設(shè)備售價為萬元, 通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.
(1)求年利潤 (萬元)關(guān)于年產(chǎn)量(臺)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少臺時 ,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】點P為兩直線l1:3x+4y﹣2=0和l2:2x+y+2=0的交點.
(1)求過P點且與直線3x﹣2y+4=0平行的直線方程;
(2)求過原點且與直線l1和l2圍成的三角形為直角三角形的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:()上橫坐標為4的點到焦點的距離為5.
(1)求拋物線的方程;
(2)設(shè)直線與拋物線交于不同兩點,若滿足,證明直線恒過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線經(jīng)過橢圓的右焦點.
(1)求實數(shù)的值;
(2)設(shè)直線與橢圓相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,,分別為橢圓的左,右焦點,橢圓上點的橫坐標等于右焦點的橫坐標,其縱坐標等于短半軸長的,則橢圓的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C:的短軸長為2,傾斜角為的直線l與橢圓C相交于A,B兩點,線段AB的中點為M,且點M與坐標原點O連線的斜率為.
(1)求橢圓C的標準方程;
(2)若,P是以AB為直徑的圓上的任意一點,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com