【題目】近年來,武漢市出現了非常嚴重的霧霾天氣,而燃放煙花爆竹會加重霧霾,是否應該全面禁放煙花爆竹已成為人們議論的一個話題.武漢市環(huán)保部門就是否贊成禁放煙花爆竹,對400位老年人和中青年市民進行了隨機問卷調查,結果如下表:
贊成禁放 | 不贊成禁放 | 合計 | |
老年人 | 60 | 140 | 200 |
中青年人 | 80 | 120 | 200 |
合計 | 140 | 260 | 400 |
附:K2=
P(k2>k0) | 0.050 | 0.025 | 0.010 |
k0 | 3.841 | 5.024 | 6.635 |
(1)有多大的把握認為“是否贊成禁放煙花爆竹”與“年齡結構”有關?請說明理由;
(2)從上述不贊成禁放煙花爆竹的市民中按年齡結構分層抽樣出13人,再從這13人中隨機的挑選2人,了解他們春節(jié)期間在煙花爆竹上消費的情況.假設一位老年人花費500元,一位中青年人花費1000元,用X表示它們在煙花爆竹上消費的總費用,求X的分布列和數學期望.
【答案】
(1)解:因為K2= ≈4.3956>3.841,
所以有95%把握認為“是否贊成禁放煙花爆竹”與“年齡結構”有關
(2)解:因為140:120=7:6,所以13人中有老年人7人,中青年人6人.
那么X=2000,1500,1000.
P(X=2000)= = ,P(X=1500)= = ,P(X=1000)= = ,
所以X的分布列為:
X | 2000 | 1500 | 1000 |
P |
所以EX=2000× +1500× +1000× = ≈1462
【解析】(1)求出K2≈4.3956>3.841,得有95%把握認為“是否贊成禁放煙花爆竹”與“年齡結構”有關.(2)13人中有老年人7人,中青年人6人.那么X=2000,1500,1000.分別求出相應的概率,由此能求出X的分布列與EX.
【考點精析】通過靈活運用離散型隨機變量及其分布列,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,橢圓 =1(a>b>0)的左、右頂點分別為A,B,焦距為2 ,直線x=﹣a與y=b交于點D,且|BD|=3 ,過點B作直線l交直線x=﹣a于點M,交橢圓于另一點P.
(1)求橢圓的方程;
(2)證明: 為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.
(1)摸出的3個球為白球的概率是多少?
(2)摸出的3個球為2個黃球1個白球的概率是多少?
(3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x﹣a|+|x﹣1|.
(1)當a=3時,求不等式f(x)≥2的解集;
(2)若f(x)≥5﹣x對x∈R恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高二某班的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,其可見部分如圖所示.據此解答如下問題:
(1)計算頻率分布直方圖中[80,90)間的矩形的高;
(2)根據莖葉圖和頻率分布直方圖估計這次測試的平均分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin2x+2 sin2x+1﹣ .
(1)求函數f(x)的最小正周期和單調遞增區(qū)間;
(2)當x∈[ , ]時,若f(x)≥log2t恒成立,求t的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com