【題目】設函數(shù)f(x)=Asin(ωx+φ)(其中A,ω,φ為常數(shù)且A>0,ω>0, )的部分圖象如圖所示,若 ),則 的值為

【答案】
【解析】解:由函數(shù)f(x)的圖知,A=2,

由T=2×[ ﹣(﹣ )]=2π,得ω= =1,

∴f(x)=2sin(x+φ);

又f( )=2sin( +φ)=2,且﹣ <φ< ,

∴φ=﹣ ,

∴f(x)=2sin(x﹣ );

由f(α)=2sin(α﹣ )= ,

∴sin(α﹣ )= ;

又0<α<

∴﹣ <α﹣ ,

∴cos(α﹣ )= =

∴f(α+ )=2sinα

=2sin[(α﹣ )+ ]

=2sin(α﹣ )cos +cos(α﹣ )sin

=2× × +2× ×

=

所以答案是:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設x,y∈R,定義xy=x(a﹣y)(a∈R,且a為常數(shù)),若f(x)=ex , g(x)=e﹣x+2x2 , F(x)=f(x)g(x).
①g(x)不存在極值;
②若f(x)的反函數(shù)為h(x),且函數(shù)y=kx與函數(shù)y=|h(x)|有兩個交點,則k= ;
③若F(x)在R上是減函數(shù),則實數(shù)a的取值范圍是(﹣∞,﹣2];
④若a=﹣3,在F(x)的曲線上存在兩點,使得過這兩點的切線互相垂直.
其中真命題的序號有 . (把所有真命題序號寫上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某油庫的設計容量是30萬噸,年初儲量為10萬噸,從年初起計劃每月購進石油m萬噸,以滿足區(qū)域內和區(qū)域外的需求,若區(qū)域內每月用石油1萬噸,區(qū)域外前x個月的需求量y(萬噸)與x的函數(shù)關系為y= (p>0,1≤x≤16,x∈N*),并且前4個月,區(qū)域外的需求量為20萬噸.
(1)試寫出第x個月石油調出后,油庫內儲油量M(萬噸)與x的函數(shù)關系式;
(2)要使16個月內每月按計劃購進石油之后,油庫總能滿足區(qū)域內和區(qū)域外的需求,且每月石油調出后,油庫的石油剩余量不超過油庫的容量,試確定m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】
(1)解方程:25x+1﹣95x+2+500=0;
(2)已知關于x的不等式ax2﹣5x+b>0的解集為 ,求關于x的不等式ax2+5x+b<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=3x2﹣4ax(a>0)與g(x)=2a2lnx+b有公共點,且在公共點處的切線方程相同,則實數(shù)b的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=﹣1,a2=1,且
(1)求a5+a6的值;
(2)設Sn為數(shù)列{an}的前n項的和,求Sn
(3)設bn=a2n﹣1+a2n , 是否存正整數(shù)i,j,k(i<j<k),使得bi , bj , bk成等差數(shù)列?若存在,求出所有滿足條件的i,j,k;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,SA=SC,AB⊥AC,D為BC的中點,E為AC上一點,且DE∥平面SAB.求證:

(1)直線AB∥平面SDE;
(2)平面ABC⊥平面SDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:x∈[2,4],x2﹣2x﹣2a≤0恒成立,命題q:f(x)=x2﹣ax+1在區(qū)間 上是增函數(shù).若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列各式: C =40;
C +C =41;
C +C +C =42;
C +C +C +C =43;

照此規(guī)律,當n∈N*時,
C +C +C +…+C =

查看答案和解析>>

同步練習冊答案