已知
(1)求函數(shù)的最小正周期及在區(qū)間上的最大值和最小值;
(2)若,求的值.

(1);(2).

解析試題分析:(1)利用二倍角公式可將化簡:,從而,再由可知,根據三角函數(shù)的性質可得,;(2)由(1)可知,若,則,即,再由可知,從而.
試題解析:(1)∵,∴,
∴函數(shù)的最小正周期為
,∴,∴,;
(2)由(1)可知,則,,
又∵,∴,∴,
.
考點:三角恒等變形.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

函數(shù))的單調減區(qū)間為        .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)求函數(shù)的最小正周期.
(2)求函數(shù)在閉區(qū)間上的最小值并求當取最小值時,的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=4cos ωx·(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間上的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)在一個周期內,當 時, 取得最小值 ;當 時, 取得最大值4,試求 的函數(shù)表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)f(x)=Asin(wx+j)(A>0,w>0,-<j<,x∈R)的部分圖象如圖所示:,
(1)求函數(shù)y=f(x)的解析式;(2)當x∈時,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù);
(1).求的周期和單調遞增區(qū)間;
(2).若關于x的方程上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

受日月引力影響,海水會發(fā)生漲退潮現(xiàn)象.通常情況下,船在漲潮時駛進港口,退潮時離開港口.某港口在某季節(jié)每天港口水位的深度(米)是時間,單位:小時,表示0:00—零時)的函數(shù),其函數(shù)關系式為.已知一天中該港口水位的深度變化有如下規(guī)律:出現(xiàn)相鄰兩次最高水位的深度的時間差為12小時,最高水位的深度為12米,最低水位的深度為6米,每天13:00時港口水位的深度恰為10.5米.
(1)試求函數(shù)的表達式;
(2)某貨船的吃水深度(船底與水面的距離)為7米,安全條例規(guī)定船舶航行時船底與海底的距離不小于3.5米是安全的,問該船在當天的什么時間段能夠安全進港?若該船欲于當天安全離港,則它最遲應在當天幾點以前離開港口?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù).
(1)若,且,求的值;
(2)求函數(shù)的最小正周期及單調遞增區(qū)間.

查看答案和解析>>

同步練習冊答案