【題目】過橢圓: 上一點向軸作垂線,垂足為右焦點, 、分別為橢圓的左頂點和上頂點,且, .
(Ⅰ)求橢圓的方程;
(Ⅱ)若動直線與橢圓交于、兩點,且以為直徑的圓恒過坐標原點.問是否存在一個定圓與動直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.
【答案】(1)(2)存在
【解析】試題分析:(1)由得,解得, ,,結(jié)合,即可求橢圓的方程;(2)先求得直線的斜率不存在及斜率為零時圓的方程,由此可得兩圓所過公共點為原點,當直線的斜率存在且不為零時,設(shè)直線的方程為代入橢圓方程消掉得的二次方程,設(shè),由韋達定理、向量數(shù)量積可得的表達式,再根據(jù)線圓相切可得的關(guān)系式,代入上述表達式可求得,由此可得結(jié)論.
試題解析:(1)由題意得,所以, .由得,解得, ,
由,得, ,橢圓的方程為.
(2)假設(shè)存在這樣的圓.設(shè), .
由已知,以為直徑的圓恒過原點,即,所以.
當直線垂直于軸時, , ,所以,又,解得,
不妨設(shè), 或, ,即直線的方程為或,此時原點到直線的距離為.
當直線的斜率存在時,可設(shè)直線的方程為,解消去得方程:
,因為直線與橢圓交于, 兩點,所以方程的判別式
,即,且, .
由,得 ,
所以 ,整理得(滿足).
所以原點到直線的距離.綜上所述,原點到直線的距離為定值,即存在定圓總與直線相切.
科目:高中數(shù)學 來源: 題型:
【題目】某單位職工義務(wù)獻血,在體檢合格的人中, 型血的共有28人, 型血的共有7人, 型血的共有9人, 型血的有3人.
(1)從中任選1人去獻血,有多少種不同的選法?
(2)從四種血型的人中各選1人去獻血,有多少種不同的選法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosωx,sinωx), =(cosωx, cosωx),其中ω>0,設(shè)函數(shù)f(x)= .
(1)若函數(shù)f(x)的最小正周期是π,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)的圖象的一個對稱中心的橫坐標為 ,求ω的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=2sinxcosx+2cos2x﹣1.
(1)求f(x)的最大值,以及該函數(shù)取最大值時x的取值集合;
(2)在△ABC中,a、b、c分別是角A、B、C所對的邊長,且,求角C.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中
(Ⅰ)若函數(shù)在處的切線與直線垂直,求的值;
(Ⅱ)討論函數(shù)極值點的個數(shù),并說明理由;
(Ⅲ)若, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】上周某校高三年級學生參加了數(shù)學測試,年部組織任課教師對這次考試進行成績分析.現(xiàn)從中抽取80名學生的數(shù)學成績(均為整數(shù))的頻率分布直方圖如圖所示.
(Ⅰ)估計這次月考數(shù)學成績的平均分和眾數(shù);
(Ⅱ)假設(shè)抽出學生的數(shù)學成績在段各不相同,且都超過94分.若將頻率視為概率,現(xiàn)用簡單隨機抽樣的方法,從95,96,97,98,99,100這6個數(shù)字中任意抽取2個數(shù),有放回地抽取3次,記這3次抽取中恰好有兩名學生的數(shù)學成績的次數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2015高考湖北】如圖,圓C與x軸相切于點T(1,0),與y軸正半軸交于兩點A,B(B在A的上方),且|AB|=2.
(1)圓C的標準方程為________.
(2)過點A任作一條直線與圓O:x2+y2=1相交于M,N兩點,下列三個結(jié)論:
①=;②-=2;
③+=2.
其中正確結(jié)論的序號是________(寫出所有正確結(jié)論的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com