【題目】已知,函數(shù).

(1)當時,解不等式;

(2)若關于的方程的解集中恰有兩個元素,求的取值范圍;

(3)設,若對任意,函數(shù)在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.

【答案】(1);(2);(3).

【解析】

(1)當a=1時,利用對數(shù)函數(shù)的單調性,直接解不等式fx1即可;

(2)化簡關于x的方程fx)+2x=0,通過分離變量推出a的表達式,通過解集中恰有兩個元素,利用二次函數(shù)的性質,即可求a的取值范圍;

(3)在R上單調遞減利用復合函數(shù)的單調性,求解函數(shù)的最值,∴令,化簡不等式,轉化為求解不等式的最大值,然后求得a的范圍.

(1)當時,,

,解得,

∴原不等式的解集為.

(2)方程,

即為,

,則

由題意得方程上只有兩解,

, ,

結合圖象可得,當時,直線和函數(shù)的圖象只有兩個公共點,

即方程只有兩個解.

∴實數(shù)的范圍.

(3)∵函數(shù)上單調遞減,

∴函數(shù)在定義域內單調遞減,

∴函數(shù)在區(qū)間上的最大值為,

最小值為,

,

由題意得,

恒成立,

,

,恒成立,

上單調遞增,

,

解得,

,

∴實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若任意兩圓交于不同兩點,且滿足,則稱兩圓為“心圓”,已知圓與圓為“心圓”,則實數(shù)的值為( )

A. B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若一條直線與一個平面垂直,則稱此直線與平面構成一個“正交線面對”.那么在一個正方體中,由兩個頂點確定的直線與含有四個頂點的平面構成的“正交線面對”的個數(shù)是( )

A. 48 B. 36 C. 24 D. 18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】擲2個骰子,至少有一個1點的概率為 (用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市大學生創(chuàng)業(yè)孵化基地某公司生產一種“儒風鄒城”特色的旅游商品.該公司年固定成本為10萬元,每生產千件需另投入2.7萬元;設該公司年內共生產該旅游商品千件并全部銷售完,每千件的銷售收入為萬元,且滿足函數(shù)關系:.

(Ⅰ)寫出年利潤(萬元)關于該旅游商品(千件)的函數(shù)解析式;

(Ⅱ)年產量為多少千件時,該公司在該旅游商品的生產中所獲年利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某中學為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識的競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐、規(guī)定:每場知識競賽前三名的得分都分別為,且);選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場比賽中獲得第一名,則下列推理正確的是( )

A. 每場比賽第一名得分為4 B. 甲可能有一場比賽獲得第二名

C. 乙有四場比賽獲得第三名 D. 丙可能有一場比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知=,,函數(shù)是奇函數(shù)。

(1)求a,c的值;

(2)當x∈[-l,2]時,的最小值是1,求的解析式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點及圓.

(1)若直線過點且與圓心的距離為1,求直線的方程;

(2)設過點的直線與圓交于兩點,當時,求以線段為直徑的圓的方程;

(3)設直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義的函數(shù),如果滿足:任意,存在常數(shù)都有成立,則稱的有界函數(shù),其中為函數(shù)上界函數(shù)

(1)當時,求函數(shù)的值域,并判斷函數(shù)是否為有界函數(shù),請說明理由;

(2)若函數(shù)是以4為上界的有界函數(shù),求實數(shù)取值范圍

查看答案和解析>>

同步練習冊答案