已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),e=2.718…,且函數(shù)y=f(x)和y=g(x)的圖像在它們與坐標(biāo)軸交點(diǎn)處的切線互相平行.
(1)求常數(shù)a的值;(2)若存在x使不等式>成立,求實(shí)數(shù)m的取值范圍;
(3)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域內(nèi)的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.
(1) a=1.(2) (-∞,0).(3)詳見(jiàn)解析.
解析試題分析:(1)求出交點(diǎn),切線平行即導(dǎo)數(shù)值相等可解;(2)轉(zhuǎn)化為新函數(shù),求出導(dǎo)數(shù),利用單調(diào)性極值解;(3)構(gòu)造新函數(shù)求導(dǎo),利用單調(diào)性證明.
試題解析:(1)f(x)與坐標(biāo)軸的交點(diǎn)為(0,a),f′(0)=a,g(x)與坐標(biāo)軸的交點(diǎn)為(a,0),g′(a)=.
∴a=,得a=±1,又a>0,故a=1.
(2>可化為m<x-ex.令h(x)=x-ex,則h′(x)=1-()ex.
∵x>0,∴+≥,ex>1(+)ex>1.故h′(x)<0.
∴h(x)在(0,+∞)上是減函數(shù),因此h(x)<h(0)=0. ∴實(shí)數(shù)m的取值范圍是(-∞,0).
(3)y=f(x)與y=g(x)的公共定義域?yàn)?0,+∞),|f(x)-g(x)|=|ex-lnx|=ex-lnx.
令h(x)=ex-x-1,則h′(x)=ex-1>0.∴h(x)在(0,+∞)上是增函數(shù).
故h(x)>h(0)=0,即ex-1>x. 、
令m(x)=lnx-x+1,則m′(x)=-1.
當(dāng)x>1時(shí),m′(x)<0,當(dāng)0<x<1時(shí),m′(x)>0.∴m(x)有最大值m(1)=0,因此lnx+1<x. ②
由①②,得ex-1>lnx+1,即ex-lnx>2.
∴函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.
考點(diǎn):導(dǎo)數(shù)幾何意義、極值、導(dǎo)數(shù)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為,為的導(dǎo)函數(shù),滿足.
(1)求;
(2)設(shè),,求函數(shù)在上的最大值;
(3)設(shè),若對(duì)于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(Ⅰ)若在是增函數(shù),求b的取值范圍;
(Ⅱ)若在時(shí)取得極值,且時(shí),恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)為實(shí)數(shù),函數(shù)
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)且時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)的定義域?yàn)椋?,).
(Ⅰ)求函數(shù)在上的最小值;
(Ⅱ)設(shè)函數(shù),如果,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)若為的極值點(diǎn),求實(shí)數(shù)的值;
(2)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)m為實(shí)數(shù),函數(shù)f(x)=-+2x+m,x∈R
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)m≤1且x>0時(shí),>2+2mx+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如下圖,過(guò)曲線:上一點(diǎn)作曲線的切線交軸于點(diǎn),又過(guò)作 軸的垂線交曲線于點(diǎn),然后再過(guò)作曲線的切線交軸于點(diǎn),又過(guò)作軸的垂線交曲線于點(diǎn),,以此類推,過(guò)點(diǎn)的切線 與軸相交于點(diǎn),再過(guò)點(diǎn)作軸的垂線交曲線于點(diǎn)(N).
(1) 求、及數(shù)列的通項(xiàng)公式;(2) 設(shè)曲線與切線及直線所圍成的圖形面積為,求的表達(dá)式; (3) 在滿足(2)的條件下, 若數(shù)列的前項(xiàng)和為,求證:N.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com