有三個命題:①垂直于同一個平面的兩條直線平行;②過平面α的一條斜線
l有且僅有一個平面與α垂直;③異面直線a、b不垂直,那么過a的任一個平面與b都不垂直。其中正確命題的個數(shù)為( )
①垂直于同一個平面的兩條直線平行,這是直線垂直平面的性質定理。
②過平面α的一條斜線l有且僅有一個平面與α垂直;
從斜線l有取一點M(M不是斜足),過點M可一直線l’垂直于平面α,顯然直線l’、l’確定的平面垂直于平面α。而這個平面與點M的位置無關,所以此類平面唯一。
③反設存在過a的一個平面與b不垂直,由線面垂直的定義可知b必垂直a,與已知矛盾。
所以三個命題都是正確,選擇D。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,四棱錐
中,
底面
為
的中點。
(I)試在
上確定一點
,使得
平面
(II)點
在滿足(I)的條件下,求直線
與平面
所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)如圖,在四棱錐
中,
,
,
,
.⑴求證
平面
;
⑵試求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,矩形
中,
,
,
為
上的點,且
.
(Ⅰ)求證:
;(Ⅱ)求證;
;
(Ⅲ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分,第Ⅰ小題4分,第Ⅱ小題5分,第Ⅲ小題3分)
如圖,
是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直線
與直線
所成的角為60°.
(Ⅰ)求證:平面
⊥平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分) 已知正三棱柱ABC-A1B1C1的各條棱長都為a,P為A1B上的點,且PC⊥AB. (Ⅰ)求二面角P-AC-B的正切值; (Ⅱ)求點B到平面PAC的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在矩形ABCD中,AB=2,AD=1,E為CD的中點,將
沿AE折起,使平面
平面ABCE,得到幾何體
.(1)求證:
平面
;(2)求BD和平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分) 如圖,在直三棱柱ABC-A
1B
1C
1中,∠ABC=90°,2AB=2BC=CC
1=2,D是棱CC
1的中點 (1)求證B
1D⊥平面ABD;
(2)平面AB
1D與側面BB
1C
1C所成銳角的大小 C
1 B
1
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
平面六面體
中,既與
共面也與
共面的棱的條數(shù)為 ( )
查看答案和解析>>