已知函數(shù).
(Ⅰ)當(dāng)時(shí),試討論的單調(diào)性;
(Ⅱ)設(shè),當(dāng)時(shí),若對(duì)任意,存在,使,求實(shí)數(shù)取值范圍.
(I) 當(dāng)時(shí),當(dāng)時(shí),在上,,在上,,函數(shù)上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),函數(shù)單調(diào)遞減;當(dāng)時(shí),時(shí),,函數(shù)上單調(diào)遞減;時(shí),函數(shù)上單調(diào)遞增;時(shí),函數(shù)上單調(diào)遞減;(II)實(shí)數(shù)取值范圍

試題分析:(I) 當(dāng)時(shí),試討論的單調(diào)性,首先確定定義域,可通過(guò)單調(diào)性的定義,或求導(dǎo)確定單調(diào)性,由于,含有對(duì)數(shù)函數(shù),可通過(guò)求導(dǎo)來(lái)確定單調(diào)區(qū)間,對(duì)函數(shù)求導(dǎo)得,由此需對(duì)參數(shù)討論,分,三種情況,判斷導(dǎo)數(shù)的符號(hào),從而得單調(diào)性;(II)設(shè),當(dāng)時(shí),若對(duì)任意,存在,使,求實(shí)數(shù)取值范圍,由題意可知,當(dāng)時(shí),若對(duì)任意時(shí),的最小值大于或等于當(dāng)時(shí)的最小值即可,由(I)知,當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增.,只需求出的最小值,由于本題屬于對(duì)稱軸不確定,需討論,從而確定實(shí)數(shù)取值范圍.也可用分離參數(shù)法來(lái)求.
試題解析:(I) =)   3分
當(dāng)時(shí),在上,,在上,,函數(shù)上單調(diào)遞減,在上單調(diào)遞增;    4分
當(dāng)時(shí),,函數(shù)單調(diào)遞減;                   5分
當(dāng)時(shí),,時(shí),,函數(shù)上單調(diào)遞減;時(shí),,函數(shù)上單調(diào)遞增;時(shí),,函數(shù)上單調(diào)遞減.     7分
(II)若對(duì)任意,存在,使成立,只需      9分
由(I)知,當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增.,     11分
法一:,對(duì)稱軸,當(dāng),即時(shí),,得:;
當(dāng),即時(shí),,得:;
當(dāng),即時(shí),,得:.          14分
綜上:.                         15分
法二:
參變量分離:,                     13分
,只需,可知上單調(diào)遞增,,.  15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)。
(Ⅰ)若時(shí),函數(shù)取得極值,求函數(shù)的圖像在處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間內(nèi)不單調(diào),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),),
(Ⅰ)證明:當(dāng)時(shí),對(duì)于任意不相等的兩個(gè)正實(shí)數(shù)、,均有成立;
(Ⅱ)記,
(ⅰ)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)若,求證:當(dāng)時(shí),
(2)若在區(qū)間上單調(diào)遞增,試求的取值范圍;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知
(1)若存在使得≥0成立,求的范圍
(2)求證:當(dāng)>1時(shí),在(1)的條件下,成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(I)求的單調(diào)區(qū)間;
(II)若存在使求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù),其中
(I)若函數(shù)圖象恒過(guò)定點(diǎn)P,且點(diǎn)P關(guān)于直線的對(duì)稱點(diǎn)在的圖象上,求m的值;
(Ⅱ)當(dāng)時(shí),設(shè),討論的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè),曲線上是否存在兩點(diǎn)P、Q,使△OPQ(O為原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊的中點(diǎn)在y軸上?如果存在,求a的取值范圍;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)若函數(shù)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),若函數(shù)存在兩個(gè)零點(diǎn),且實(shí)數(shù)滿足,問(wèn):函數(shù)處的切線能否平行于軸?若能,求出該切線方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)的圖像如圖所示,且.則的值是     

查看答案和解析>>

同步練習(xí)冊(cè)答案