【題目】執(zhí)行如圖的程序框圖,若輸出的y值為5,則判斷框中可填入的條件是( )
A.i<3
B.i<4
C.i<5
D.i<6
【答案】B
【解析】解:模擬執(zhí)行程序,可得
x=1,y=1,i=1
滿足條件,執(zhí)行循環(huán)體,y=2,x=1,i=2
滿足條件,執(zhí)行循環(huán)體,y=3,x=2,i=3
滿足條件,執(zhí)行循環(huán)體,y=5,x=3,i=4
由題意,此時(shí)應(yīng)該不滿足條件,退出循環(huán),輸出y的值為5.
故判斷框中可填入的條件是i≤3?或i<4?.
故選:B.
【考點(diǎn)精析】通過靈活運(yùn)用程序框圖,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線,為坐標(biāo)原點(diǎn),離心率,點(diǎn)在雙曲線上.
(1)求雙曲線的方程;
(2)若直線與雙曲線交于、兩點(diǎn),且.求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程:(為參數(shù)),曲線的參數(shù)方程:(為參數(shù)),且直線交曲線于,兩點(diǎn).
(Ⅰ)將曲線的參數(shù)方程化為普通方程,并求時(shí),的長度;
(Ⅱ) 已知點(diǎn):,求當(dāng)直線傾斜角變化時(shí),的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右頂點(diǎn)A(2,0),且過點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)B(1,0)且斜率為k1(k1≠0)的直線l于橢圓C相交于E,F(xiàn)兩點(diǎn),直線AE,AF分別交直線x=3于M,N兩點(diǎn),線段MN的中點(diǎn)為P,記直線PB的斜率為k2 , 求證:k1k2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在城市舊城改造中,某小區(qū)為了升級(jí)居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個(gè)面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價(jià)為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價(jià)為100元/.設(shè)矩形的長為.
(1)設(shè)總造價(jià)(元)表示為長度的函數(shù);
(2)當(dāng)取何值時(shí),總造價(jià)最低,并求出最低總造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,且anan+1+ (an﹣an+1)+1=0,則a2016=( )
A.1
B.﹣1
C.2+
D.2﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對(duì)研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
銷量件 | 100 | 94 | 93 | 90 | 85 | 78 |
(1)若銷量與單價(jià)服從線性相關(guān)關(guān)系,求該回歸方程;
(2)在(1)的前提下,若該產(chǎn)品的成本是5元/件,問:產(chǎn)品該如何確定單價(jià),可使工廠獲得最大利潤。
附:對(duì)于一組數(shù)據(jù),,……,
其回歸直線的斜率的最小二乘估計(jì)值為;
本題參考數(shù)值:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C為⊙O上三點(diǎn),B為 的中點(diǎn),P為AC延長線上一點(diǎn),PQ與⊙O相切于點(diǎn)Q,BQ與AC相交于點(diǎn)D.
(Ⅰ)證明:△DPQ為等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)證明:當(dāng)時(shí),;
(Ⅲ)確定實(shí)數(shù)的所有可能取值,使得存在,當(dāng)時(shí),恒有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com