等式12+22+32+…+n2=(5n2-7n+4)(  )

A.n為任何正整數(shù)時(shí)都成立

B.僅當(dāng)n=1,2,3時(shí)成立

C.當(dāng)n=4時(shí)成立,n=5時(shí)不成立

D.僅當(dāng)n=4時(shí)不成立

解析:當(dāng)n=1時(shí),左=1=右,成立;?

當(dāng)n=2時(shí),左=5=右,成立;?

當(dāng)n=3時(shí),左=14=右,成立;?

當(dāng)n=4時(shí),左=30≠28=右,不成立.?

故答案為B.?

答案:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等式12+22+32+…+n2=
5n2-7n+4
2
(  )
A、n為任何自然數(shù)時(shí)都成立
B、僅當(dāng)n=1,2,3時(shí)成立
C、n=4時(shí)成立,n=5時(shí)不成立
D、僅當(dāng)n=4時(shí)不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

是否存在常數(shù)a、b、c使等式12+22+32+…n2+(n-1)2+…22+12=an(bn2+c)對(duì)于一切n∈N*都成立,若存在,求出a、b、c并證明;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等式12+22+32+…+n2=(5n2-7n+4)(  )

A.n為任何正整數(shù)時(shí)都成立

B.僅當(dāng)n=1,2,3時(shí)成立

C.當(dāng)n=4時(shí)成立,n=5時(shí)不成立

D.僅當(dāng)n=4時(shí)不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

是否存在常數(shù)a、b、c使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)對(duì)于一切n∈N*都成立,若存在,求出a、b、c并證明;若不存在,試說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案