是否存在常數(shù)a、b、c使等式12+22+32+…n2+(n-1)2+…22+12=an(bn2+c)對(duì)于一切n∈N*都成立,若存在,求出a、b、c并證明;若不存在,試說(shuō)明理由.
分析:先假設(shè)存在符合題意的常數(shù)a,b,c,再令n=1,n=2,n=3構(gòu)造三個(gè)方程求出a,b,c,再用用數(shù)學(xué)歸納法證明成立,證明時(shí)先證:(1)當(dāng)n=1時(shí)成立.(2)再假設(shè)n=k(k≥1)時(shí),成立,遞推到n=k+1時(shí),成立即可.
解答:解:假設(shè)存在a、b、c使12+22+32+…n2+(n-1)2+…21+12=an(bn2+c)對(duì)于一切n∈N*都成立.
當(dāng)n=1時(shí),a(b+c)=1;當(dāng)n=2時(shí),2a(4b+c)=6;當(dāng)n=3時(shí),3a(9b+c)=19.
解方程組
a(b+c)=1
a(4b+c)=3
3a(9b+c)=19
,解得
a=
1
3
b=2c
c≠0

證明如下:
①當(dāng)n=1時(shí),由以上知存在常數(shù)a、b、c使等式成立.
②假設(shè)n=k(k∈N*)時(shí)等式成立,
即12+22+32+…k2+(k-1)2+…22+12=ak(bk2+c)=
1
3
k(2k2+1)
;
當(dāng)n=k+1時(shí),12+22+32+…(k+1)2+k2+…22+12=ak(bk2+c)=
1
3
k(2k2+1)
+(k+1)2+k2=
1
3
(k+1)[2(k+1)2+1]
;
即n=k+1時(shí),等式成立.
因此存在a=
1
3c
,b=2c,c≠0常數(shù)
,使等式對(duì)一切n∈N*都成立.
點(diǎn)評(píng):本題主要考查研究存在性問(wèn)題和數(shù)學(xué)歸納法,對(duì)存在性問(wèn)題先假設(shè)存在,再證明是否符合條件,數(shù)學(xué)歸納法的關(guān)鍵是遞推環(huán)節(jié),要符合假設(shè)的模型才能成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

是否存在常數(shù)a,b使等式1-n+2-(n-1)+3-(n-2)+…+n-1=an(n+b)(n+2)對(duì)于任意的n∈N+總成立?若存在,求出來(lái)并證明;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=2sin2x+2
3
sinxcosx
x∈[0,
π
2
]

(1)求函數(shù)f(x)的最值,及相應(yīng)的x值;
(2)若|f(x)-a|≤2恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)g(x)=-2af(x)+2a+b,是否存在常數(shù)a,b∈Z,使得g(x)的值域?yàn)閇-2,4]?若存在,求出相應(yīng)a,b的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在公差為d(d≠0)的等差數(shù)列{an}和公比為q的等比數(shù)列{bn}中,已知a1=b1=1,a2=b2,a8=b3
(Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)是否存在常數(shù)a,b,使得對(duì)于一切正整數(shù)n,都有an=logabn+b成立?若存在,求出常數(shù)a和b,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•河?xùn)|區(qū)一模)已知公差不為零的等差數(shù)列{xn}和等比數(shù)列{yn}中,x1=y1=1,x2=y2,x6=y3.是否存在常數(shù)a、b,使得對(duì)于一切正整數(shù)n,都有xn=logayn+b成立?如果存在,求出a和b的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•虹口區(qū)二模)已知數(shù)列{an}滿足a1=2,an+1=2(
n+1n
2an
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=(An2+Bn+C)•2n,是否存在常數(shù)A、B、C,使對(duì)一切n∈N*,均有an=bn+1-bn成立?若存在,求出常數(shù)A、B、C的值,若不存在,說(shuō)明理由
(3)求證:a1+a2+…+an≤(n2-2n+2)•2n,( n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案