已知的圖象過原點,且在點處的切線與軸平行.對任意,都有.
(1)求函數(shù)在點處切線的斜率;
(2)求的解析式;
(3)設(shè),對任意,都有.求實數(shù)的取值范圍

(1); (2) ; (3)

解析試題分析:(1)   ∵  ∴
(2) ∵  ∴

∵對恒成立. 即:恒成立

     ∴    
(3) ∴


∴對 恒成立
即:
, 則

    ∴。
考點:本題主要考查應用導數(shù)研究函數(shù)的單調(diào)性,導數(shù)的幾何意義,不等式恒成立問題。
點評:中檔題,本題屬于導數(shù)應用中的基本問題,通過求導數(shù),確定得到切線的斜率,通過研究導數(shù)的正負,明確函數(shù)的單調(diào)性。對于恒成立問題,一般地要通過構(gòu)造函數(shù),轉(zhuǎn)化成研究函數(shù)的最值。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)的最小值為,求的最大值;
(3)若函數(shù)的最小值為定義域內(nèi)的任意兩個值,試比較  的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的最大值;
(2)若函數(shù)有相同極值點,
①求實數(shù)的值;
②若對于為自然對數(shù)的底數(shù)),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖像如右所示。
(1)求證:在區(qū)間為增函數(shù);
(2)試討論在區(qū)間上的最小值.(要求把結(jié)果寫成分段函數(shù)的形式)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(Ⅱ)當時,恒成立,求整數(shù)的最大值;
(Ⅲ)試證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1) 當時, 求函數(shù)的單調(diào)增區(qū)間;
(2)當時,求函數(shù)在區(qū)間上的最小值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖象在與軸交點處的切線方程是.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)函數(shù),若的極值存在,求實數(shù)的取值范圍以及當取何值時函數(shù)分別取得極大和極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè),滿足.    (1) 求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)三內(nèi)角所對邊分別為,求上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的最大值為1.
(1)求常數(shù)的值;(2)求使成立的x的取值集合.

查看答案和解析>>

同步練習冊答案