【題目】已知焦點在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數(shù),且過點,求:(1)求橢圓方程;
(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M,N,點,有|MP|=|NP|,求k的取值范圍.
【答案】(1);(2)
【解析】
(1)由雙曲線的標(biāo)準(zhǔn)方程,求得離心率,代入即可求得橢圓的離心率為.設(shè)橢圓方程,將橢圓的標(biāo)準(zhǔn)方程,即可求得的,即可求得橢圓方程;
(2)將直線方程代入橢圓方程,由韋達(dá)定理及中點坐標(biāo)公式,即可求得中點的坐標(biāo)為,求得其垂直平分線方程,在上,代入求得的值,代入即可求得的取值范圍.
(1)雙曲線3x2-y2=3的標(biāo)準(zhǔn)方程:,a=1,b=,c=2,
橢圓的離心率為e===2. 由題意可得,橢圓的離心率e=,
設(shè)橢圓方程為(a>b>0), 由e==,則a=2c,
∴b2=a2-c2=3c2, ∴橢圓方程為.
又點(1,)在橢圓上, ∴,解得:c2=1,
∴橢圓的方程為:;
(2)設(shè)M(x1,y1),N(x2,y2),
∴,消去y并整理得:(3+4k2)x2+8kmx+4m2-12=0,
∵直線y=kx+m與橢圓有兩個交點,
△=(8km)2-4(3+4k2)(4m2-12)>0,即m2<4k2+3,
由x1+x2=-,y1+y2=k(x1+x2)+2m=,
∴MN中點P的坐標(biāo)為(-,), 即為|MP|=|NP|,
∴P在MN的垂直平分線上,
設(shè)MN的垂直平分線l′方程:y=-(x-),
∵P在l′上,
∴=-(--),得4k2+5km+3=0,解得:m=-,
將上式代入①式得<4k2+3,即k2>,
解得:k>或k<-,
∴k的取值范圍為(-∞,-)∪(+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x、y滿足約束條件 ,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為7,則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1+x﹣ + ﹣ ﹣…+ ﹣ + ,則下列結(jié)論正確的是( )
A.f(x)在(0,1)上恰有一個零點
B.f(x)在(0,1)上恰有兩個零點
C.f(x)在(﹣1,0)上恰有一個零點
D.f(x)在(﹣1,0)上恰有兩個零點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,函數(shù)f(x)= +|lnx﹣a|,x∈[1,e2].
(1)當(dāng)a=3時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)若f(x)≤ 恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m、n∈R+ , f(x)=|x+m|+|2x﹣n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+ )的最小值為8.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:
①M={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對點集”的序號是( )
A.①②
B.②③
C.①④
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA與圓O相切于點A,經(jīng)過點O的割線PBC交圓O于點B,C,∠APC的平分線分別交AB,AC于點D,E.
(Ⅰ)證明:∠ADE=∠AED;
(Ⅱ)若AC=AP,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com