精英家教網 > 高中數學 > 題目詳情

【題目】某幾何體的三視圖如圖所示,則該幾何體的表面積為( )

A.45
B.
C.
D.60

【答案】A
【解析】解:由已知中的三視圖,可知該幾何體是一個以邊長為3,和4的直角三角形為底面的三棱柱,切去了一個邊長為3,和4的直角三角形為底面,高是3的三棱錐.(如圖)ABC﹣D是切去的三棱錐
可得:矩形ABB′A′的面積為:5×3=15,
梯形ADC′A′的面積為: = ,
梯形BDC′B′的面積為: ,
底面ABC的面積為: ,
三角形ABD是直角三角形:其面積為: ,
∴該幾何體的表面積為:
故選A

【考點精析】本題主要考查了由三視圖求面積、體積的相關知識點,需要掌握求體積的關鍵是求出底面積和高;求全面積的關鍵是求出各個側面的面積才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD=4,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE,構成四棱錐A1﹣BCDE,若M為線段A1C的中點,在翻轉過程中有如下4個命題: ①MB∥平面A1DE;
②存在某個位置,使DE⊥A1C;
③存在某個位置,使A1D⊥CE;
④點A1在半徑為 的圓面上運動,
其中正確的命題個數是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】到兩互相垂直的異面直線的距離相等的點,在過其中一條直線且平行于另一條直線的平面內的軌跡是(
A.直線
B.橢圓
C.拋物線
D.雙曲線

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD

(1)證明:ACBD

(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AEEC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓 (其中為圓心)上的每一點橫坐標不變,縱坐標變?yōu)樵瓉淼囊话,得到曲線.

1)求曲線的方程;

2若點為曲線上一點,過點作曲線的切線交圓于不同的兩點(其中的右側),已知點.求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,AB=5,AC=12,BC=13,一只小螞蟻從△ABC的內切圓的圓心處開始隨機爬行,當螞蟻(在三角形內部)與△ABC各邊距離不低于1個單位時其行動是安全的,則這只小螞蟻在△ABC內任意行動時安全的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某綜藝節(jié)目為增強娛樂性,要求現場嘉賓與其場外好友連線互動.凡是拒絕表演節(jié)目的好友均無連線好友的機會;凡是選擇表演節(jié)目的好友均需連線未參加過此活動的3個好友參與此活動,以此下去.
(Ⅰ)假設每個人選擇表演與否是等可能的,且互不影響,則某人選擇表演后,其連線的3個好友中不少于2個好友選擇表演節(jié)目的概率是多少?
(Ⅱ)為調查“選擇表演者”與其性別是否有關,采取隨機抽樣得到如表:

選擇表演

拒絕表演

合計

50

10

60

10

10

20

合計

60

20

80

①根據表中數據,是否有99%的把握認為“表演節(jié)目”與好友的性別有關?
②將此樣本的頻率視為總體的概率,隨機調查3名男性好友,設X為3個人中選擇表演的人數,求X的分布列和期望.
附:K2= ;

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過點P(1,2)引直線,使A(2,3),B(4,-5)到它的距離相等,則這條直線的方程為 (  )

A. 4x+y-6=0

B. x+4y-6=0

C. 2x+3y-7=0或x+4y-6=0

D. 3x+2y-7=0或4x+y-6=0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中,已知平面, , , ,

(I)求證: 平面

(II)求直線與平面所成角的正弦值

查看答案和解析>>

同步練習冊答案