【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠BAD=60°,PA=PD=AD=2,點(diǎn)M在線段PC上,且PM=2MC,N為AD的中點(diǎn).
(1)求證:AD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱錐PNBM的體積.
【答案】(1)證明見解析(2)
【解析】
(1)由等邊三角形的性質(zhì)可得PN⊥AD,BN⊥AD,從而可證明.
(2)由平面PAD⊥平面ABCD,結(jié)合(1)可得PN⊥平面ABCD,由條件有,從而可求得體積.
(1)連接BD.
∵PA=PD,N為AD的中點(diǎn),∴PN⊥AD.
又底面ABCD是菱形,∠BAD=60°,
∴△ABD為等邊三角形,
∴BN⊥AD,
又PN∩BN=N,∴AD⊥平面PNB.
(2)∵PA=PD=AD=2,∴PN=NB=.
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD,
∴PN⊥平面ABCD,
∴PN⊥NB,∴S△PNB=.
∵AD⊥平面PNB,AD∥BC,∴BC⊥平面PNB.
又PM=2MC,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,,四邊形和四邊形是兩個(gè)全等的等腰梯形.
(1)求證:四邊形為矩形;
(2)若平面平面,,,,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn),過作傾斜角互補(bǔ)的兩條不同直線、.
(1)求拋物線的方程及準(zhǔn)線方程;
(2)設(shè)直線、分別交拋物線于、兩點(diǎn)(均不與重合,如圖),記直線的斜率為正數(shù),若以線段為直徑的圓與拋物線的準(zhǔn)線相切,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,,該橢圓與軸正半軸交于點(diǎn),且是邊長為的等邊三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)任作一直線交橢圓于,兩點(diǎn),平面上有一動(dòng)點(diǎn),設(shè)直線,,的斜率分別為,,,且滿足,求動(dòng)點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,, ,,, PA=AB=BC=2. E是PC的中點(diǎn).
(1)證明: ;
(2)求三棱錐P-ABC的體積;
(3) 證明:平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M為圓C:x2+y2-4x-14y+45=0上任意一點(diǎn),且點(diǎn)Q(-2,3).
(1)求|MQ|的最大值和最小值;
(2)若M(m,n),求的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的極值點(diǎn);
(Ⅱ)若直線過點(diǎn),并且與曲線相切,求直線的方程;
(Ⅲ)設(shè)函數(shù),其中,求函數(shù)在區(qū)間上的最小值.(其中為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某超市為顧客提供四種結(jié)賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡.若顧客甲沒有銀聯(lián)卡,顧客乙只帶了現(xiàn)金,顧客丙、丁用哪種方式結(jié)賬都可以,這四名顧客購物后,恰好用了其中的三種結(jié)賬方式,那么他們結(jié)賬方式的可能情況有( )種
A. 19B. 7C. 26D. 12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com