【題目】已知關(guān)于x的方程x2-2mx+4m2-6=0的兩不等根為α,β,試求(α-1)2+(β-1)2的最值.

【答案】最大值為15無最小值.

【解析】試題分析:根據(jù)一元二次方程寫出韋達(dá)定理,將原式化簡為兩根和與乘積的形式代入,化簡為關(guān)于m的二次函數(shù),由Δ>0求出m的取值范圍,即函數(shù)的定義域,根據(jù)二次函數(shù)的圖象和性質(zhì)求出最值.

試題解析:

由題可知α+β=2m,αβ=4m2-6,

∴(α-1)2+(β-1)2=α2+β2-2(α+β)+2=(α+β)2-2αβ-2(α+β)+2

=4m2-2(4m2-6)-2·2m+2=-4m2-4m+14=-4(m+)2+15.

∵Δ=(-2m)2-4(4m2-6)=-12m2+24>0,∴當(dāng)m=-時滿足Δ>0.∴原式的最大值為15,無最小值.

點(diǎn)睛:本題考查一元二次方程根與系數(shù)的關(guān)系.設(shè)一元二次方程的兩根為, ,當(dāng),方程有兩個等根,當(dāng),方程無根, 當(dāng),方程有兩個不相等的實(shí)數(shù)根,且根據(jù)韋達(dá)定理有,或者根據(jù)求根公式可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合P={x|a+1≤x≤2a+1},Q={x|1≤2x+5≤15}.

(1)已知a=3,求(RP)∩Q

(2)若PQQ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A{x|ax23x20}.

(1)A是單元素集合,求集合A

(2)A中至少有一個元素,a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費(fèi)每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.

方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個顧客均分別消費(fèi)了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如下表所示:

積極參加班級工作

不積極參加班級工作

合計

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計

24

26

50

(1)如果隨機(jī)調(diào)查這個班的一名學(xué)生,那么抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?

(2)若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項活動,問兩名學(xué)生中有1名男生的概率是多少?

(3)學(xué)生的學(xué)習(xí)積極性與對待班極工作的態(tài)度是否有關(guān)系?請說明理由.

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,現(xiàn)從中隨機(jī)抽取100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>

成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?/span>.

)若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求的值;

)已知,求數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進(jìn)行消毒,已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,yt的函數(shù)關(guān)系式為 (a為常數(shù)),如圖所示.根據(jù)圖中提供的信息,回答下列問題:

(1)從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數(shù)關(guān)系式為_________;

(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進(jìn)教室,那么從藥物釋放開始,至少需要經(jīng)過_________小時后,學(xué)生才能回到教室.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】屆夏季奧林匹克運(yùn)動會將于 2016 8 5 21 日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運(yùn)會中國代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)( 單位: 枚).

倫敦

北京

屆雅典

屆悉尼

屆亞特蘭大

中國

俄羅斯

(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運(yùn)會兩國代表團(tuán)獲得的金牌數(shù)的莖葉圖, 并通過莖葉圖比較兩國代表團(tuán)獲得的金牌數(shù)的平均值及分散程度( 不要求計算出具體數(shù)值, 給出結(jié)論即可);

(2)甲、 乙、 丙三人競猜今年中國代表團(tuán)和俄羅斯代表團(tuán)中的哪一個獲得的金牌數(shù)多( 假設(shè)兩國代表團(tuán)獲得的金牌數(shù)不會相等) 規(guī)定甲、 乙、 丙必須在兩個代表團(tuán)中選一個, 已知甲、 乙猜中國代表團(tuán)的概率都為, 丙猜中國代表團(tuán)的概率為 三人各自猜哪個代表團(tuán)的結(jié)果互不影響.現(xiàn)讓甲、 乙、 丙各猜一次, 設(shè)三人中猜中國代表團(tuán)的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機(jī)對50名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過的有10人.在20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.

(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過的人與性別有關(guān);

平均車速超過

人數(shù)

平均車速不超過

人數(shù)

合計

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計

(Ⅱ )以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.

參考公式: ,其中

參考數(shù)據(jù):

0.150

0.100

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案