【題目】已知函數(shù)f(x)=ax5+bx3﹣x+2(a,b為常數(shù)),且f(﹣2)=5,則f(2)=(
A.﹣1
B.﹣5
C.1
D.5

【答案】A
【解析】解:∵函數(shù)f(x)=ax5+bx3﹣x+2(a,b為常數(shù)),
且f(﹣2)=5,
∴f(﹣2)=﹣32a﹣8b+2+2=5,
解得32a+8b=﹣1,
∴f(2)=32a+8b﹣2+2=﹣1.
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的值的相關(guān)知識(shí),掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)表格中的數(shù)據(jù),可以判定方程ex﹣x﹣2=0的一個(gè)根所在的區(qū)間為(

x

﹣1

0

1

2

3

ex

0.37

1

2.72

7.39

20.09

x+2

1

2

3

4

5


A.(﹣1,0)
B.(0,1)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b為實(shí)數(shù),則“a=0”是“f(x)=x2+a|x|+b為偶函數(shù)”的(
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x3+3x2+6x,f(a)=1,f(b)=﹣9,則a+b的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在報(bào)名的3名男教師和6名女教師中,選取5人參加義務(wù)獻(xiàn)血,要求男、女教師都有,則不同的選取方式的種數(shù)為(
A.60
B.75
C.105
D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題,其中正確的序號是(寫上所有正確命題的序號).
①函數(shù)f(x)=ln(x﹣1)+2的圖象恒過定點(diǎn)(1,2).
②若函數(shù)f(x)的定義域?yàn)閇﹣1,1],則函數(shù)f(2x﹣1)的定義域?yàn)閇﹣3,1].
③已知集合P={a,b},Q={﹣1,0,1},則映射f:P→Q中滿足f(b)=0的映射共有3個(gè).
④若函數(shù)f(x)=log2(x2﹣2ax+1)的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是(﹣1,1).
⑤函數(shù)f(x)=ex的圖象關(guān)于直線y=x對稱的函數(shù)解析式為y=lgx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镽,對于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,若f(﹣1)=2.
(1)求f(0)的值和判斷函數(shù)f(x)的奇偶性;
(2)求證:函數(shù)f(x)是在R上的減函數(shù);
(3)求函數(shù)f(x)在區(qū)間[﹣2,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中位數(shù)為1010的一組數(shù)構(gòu)成等差數(shù)列,其末項(xiàng)為2015,則該數(shù)列的首項(xiàng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ξ~N(μ,δ2),若P(ξ>4)=P(ξ<2)成立,且P(ξ≤0)=0.2,則P(0<ξ<6)=

查看答案和解析>>

同步練習(xí)冊答案