已知等比數(shù)列{an}的所有項(xiàng)均為正數(shù),首項(xiàng)a1=1,且a4,3a3,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an+1λan}的前n項(xiàng)和為Sn,若Sn=2n-1(n∈N*),求實(shí)數(shù)λ的值.

(1)an=2n-1(n∈N*).(2)λ=1

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求數(shù)列項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)曲線在點(diǎn)處的切線與軸的交點(diǎn)坐標(biāo)為
(1)求的表達(dá)式;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足Sn=-an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=++…+,求T2012;
(3)若cn=an·f(an),求{cn}的前n項(xiàng)和Un.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的相鄰兩項(xiàng)an,an+1是關(guān)于x的方程x2-2nxbn=0的兩根,且a1=1.
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn;
(3)設(shè)函數(shù)f(n)=bnt·Sn(n∈N*),若f(n)>0對(duì)任意的n∈N*都成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等比數(shù)列{cn}滿足cn+1+cn=10·4n-1(n∈N*),數(shù)列{an}的前n項(xiàng)和為Sn,且an=log2cn.
(1)求an,Sn;
(2)數(shù)列{bn}滿足bn,Tn為數(shù)列{bn}的前n項(xiàng)和,是否存在正整數(shù)m(m>1),使得T1,Tm,T6m成等比數(shù)列?若存在,求出所有m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}成等比數(shù)列,且an>0.
(1)若a2a1=8,a3m.①當(dāng)m=48時(shí),求數(shù)列{an}的通項(xiàng)公式;②若數(shù)列{an}是唯一的,求m的值;
(2)若a2ka2k-1+…+ak+1-(akak-1+…+a1)=8,k∈N*,求a2k+1a2k+2+…+a3k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和是Sn,且Snan=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=log3,數(shù)列的前n項(xiàng)和為Tn,證明:Tn<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列為遞增數(shù)列,且,.(Ⅰ)求;
(Ⅱ)令,不等式的解集為,求所有的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案