【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實數(shù)a的值;
(2)若對任意的x1 , x2∈[1,a+1],總有|f(x1)﹣f(x2)|≤4,求實數(shù)a的取值范圍.

【答案】
(1)解:∵f(x)=(x﹣a)2+5﹣a2(a>1),

∴f(x)在[1,a]上是減函數(shù),又定義域和值域均為[1,a],

,解得a=2


(2)解:若a≥2,又x=a∈[1,a+1],且,(a+1)﹣a≤a﹣1

∴f(x)max=f(1)=6﹣2a,f(x)min=f(a)=5﹣a2

∵對任意的x1,x2∈[1,a+1],總有|f(x1)﹣f(x2)|≤4,

∴f(x)max﹣f(x)min≤4,即(6﹣2a)﹣(5﹣a2)≤4,解得﹣1≤a≤3,

又a≥2,∴2≤a≤3.

若1<a<2,fmax(x)=f(a+1)=6﹣a2,f(x)min=f(a)=5﹣a2,

f(x)max﹣f(x)min≤4顯然成立,綜上1<a≤3


【解析】(1)先將函數(shù)進行配方得到對稱軸,判定出函數(shù)f(x)在[1,a]上的單調性,然后根據定義域和值域均為[1,a]建立方程組,解之即可;(2)將a與2進行比較,將條件“對任意的x1 , x2∈[1,a+1],總有|f(x1)﹣f(x2)|≤4”轉化成對任意的x1 , x2∈[1,a+1],總有f(x)max﹣f(x)min≤4恒成立即可.
【考點精析】利用函數(shù)的定義域及其求法和函數(shù)的值域對題目進行判斷即可得到答案,需要熟知求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質是相同的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若一個四棱錐底面為正方形,頂點在底面的射影為正方形的中心,且該四棱錐的體積為9,當其外接球表面積最小時,它的高為(
A.3
B.2
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩形ABCD中,AB=2,AD=1,M為CD的中點.如圖將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:BM⊥平面ADM;
(2)若點E是線段DB上的中點,求三棱錐E﹣ABM的體積V1與四棱錐D﹣ABCM的體積V2之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】龍虎山花語世界位于龍虎山主景區(qū)排衙峰下,是一座獨具現(xiàn)代園藝風格的花卉公園,園內匯集了余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經典園林風格,景觀設計唯美新穎,玫瑰花園、香草花溪、臺地花海、植物迷宮、兒童樂園等景點錯落有致,交相呼應又自成一體,是世界園藝景觀的大展示.該景區(qū)自年春建成,試運行以來,每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數(shù)最高達萬人.

某學校社團為了解進園旅客的具體情形以及采集旅客對園區(qū)的建議,特別在日賞花旺季對進園游客進行取樣調查,從當日名游客中抽取人進行統(tǒng)計分析,結果如下:

年齡

頻數(shù)

頻率

4

合計

(I)完成表一中的空位①~④,并作答題紙中補全頻率分布直方圖,并估計日當日接待游客中歲以下的游戲的人數(shù).

(II)完成表二,并判斷能否有的把握認為在觀花游客中“年齡達到歲以上”與“性別”相關;

(表二)

歲以上

歲以下

合計

男生

女生

合計

(參考公式: ,其中

(III)按分層抽樣(分歲以上與歲以下兩層)抽取被調查的位游客中的人作為幸運游客免費領取龍虎山內部景區(qū)門票,再從這人中選取人接受電視臺采訪,設這人中年齡在歲以上(含歲)的人數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax﹣(k﹣1)ax(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求k值;
(2)若f(1)= ,且g(x)=a2x+a2x﹣2mf(x)在[1,+∞)上的最小值為﹣2,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某項體育比賽中,七位裁判為一選手打出的分數(shù)如下: 90 89 90 95 93 94 93
去掉一個最高分和一個最低分后,所剩數(shù)的平均值和方差分別為(
A.92,2
B.92,2.8
C.93,2
D.93,2.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計算題
(1)已知cos( +x)= ,( <x< ),求 的值.
(2)若 , 是夾角60°的兩個單位向量,求 =2 + =﹣3 +2 的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}、{bn}滿足:a1= ,an+bn=1,bn+1=
(1)求a2 , a3;
(2)證數(shù)列{ }為等差數(shù)列,并求數(shù)列{an}和{bn}的通項公式;
(3)設Sn=a1a2+a2a3+a3a4+…+anan+1 , 求實數(shù)λ為何值時4λSn<bn恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=sin(ωx+φ)(ω>0,|φ|< )在同一個周期內,當x= 時y取最大值1,當x= 時y取最小值﹣1.
(1)求函數(shù)的解析式y(tǒng)=f(x);
(2)當x∈[ , ]時.求函數(shù)y=f(x)的值域.

查看答案和解析>>

同步練習冊答案