【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用AB兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫(huà)出頻率分布直方圖(如下圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫(xiě)下面2×2列聯(lián)表;

甲班(A方式)

乙班(B方式)

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

(Ⅱ)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān).

【解析】試題分析:(Ⅰ)根據(jù)頻率分步直方圖所給的數(shù)據(jù),寫(xiě)出列聯(lián)表,填入列聯(lián)表的數(shù)據(jù);(Ⅱ)利用求觀(guān)測(cè)值的公式,代入列聯(lián)表中的數(shù)據(jù),得到觀(guān)測(cè)值,同臨界值進(jìn)行比較,得到結(jié)論.

試題解析:(Ⅰ)由頻率分布直方圖可得,甲班成績(jī)優(yōu)秀、成績(jī)不優(yōu)秀的人數(shù)分別為12,38,乙班成績(jī)優(yōu)秀、成績(jī)不優(yōu)秀的人數(shù)分別為4,46.

甲班(A方式)

乙班(B方式)

總計(jì)

成績(jī)優(yōu)秀

12

4

16

成績(jī)不優(yōu)秀

38

46

84

總計(jì)

50

50

100

(Ⅱ)能判定,根據(jù)列聯(lián)表中數(shù)據(jù),K2的觀(guān)測(cè)值

由于4.762>3.841,所以在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)正方體的展開(kāi)圖,如果將它還原為正方體,那么NC、DE、AF、BM這四條線(xiàn)段所在的直線(xiàn)是異面直線(xiàn)的有多少對(duì)?試以其中一對(duì)為例進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=-x2+2x-3.

(1)求f(x)在區(qū)間[2a-1,2]上的最小值g(a);

(2)求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=2ax2﹣2bx﹣a+b(a,b∈R,a>0),g(x)=2ax﹣2b
(1)若時(shí),求f(sinθ)的最大值;
(2)設(shè)a>0時(shí),若對(duì)任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值為2,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=bax , (其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(1,8),B(3,32)
(1)求f(x)的解析式;
(2)若不等式+1﹣2m≥0在x∈(﹣∞,1]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , 的中點(diǎn).

1)求證:平面平面;

2)若二面角的余弦值為,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AB為⊙O的直徑,直線(xiàn)CD與⊙O相切于E,AD垂直CDDBC垂直CDC,EF垂直ABF,連接AE,BE.

證明:(1)∠FEB=∠CEB

(2)EF2AD·BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集I=R,集合A={x∈R|},集合B是不等式2|x+1|<4的解集,求A∩(CIB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為 .

1)求數(shù)列的通項(xiàng)公式;

2)令,設(shè)數(shù)列的前項(xiàng)和為,

3)令,對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案