【題目】已知函數(shù)的圖象在點(diǎn)處的切線為,若函數(shù)滿足(其中為函數(shù)的定義域,當(dāng)時(shí),恒成立,則稱為函數(shù)的“轉(zhuǎn)折點(diǎn)”,已知函數(shù)在區(qū)間上存在一個(gè)“轉(zhuǎn)折點(diǎn)”,則的取值范圍是

A. B. C. D.

【答案】B

【解析】

根據(jù)已知函數(shù),求出切線方程,構(gòu)造函數(shù),求導(dǎo),根據(jù)導(dǎo)數(shù)判斷單調(diào)性,找出其轉(zhuǎn)折點(diǎn),并討論的取值范圍。

由題可得,則在點(diǎn)處的切線的斜率,,

所以函數(shù)的圖象在點(diǎn)處的切線方程為:

即切線,

,

,且

,且,

,

1)當(dāng)時(shí),,則在區(qū)間上單調(diào)遞增,所以當(dāng),當(dāng),則在區(qū)間上單調(diào)遞減,,在上單調(diào)遞增,

所以當(dāng)時(shí),,不滿足題意,舍去,

2)當(dāng)時(shí), ),則在區(qū)間上單調(diào)遞增,所以當(dāng),,當(dāng),,則在區(qū)間上單調(diào)遞減,,在上單調(diào)遞增,,所以當(dāng)時(shí),,不滿足題意,舍去,

(3)當(dāng),),則在區(qū)間上單調(diào)遞增,取,則,所以在區(qū)間上單調(diào)遞增,,當(dāng)時(shí),恒成立,故為函數(shù)在區(qū)間上的一個(gè)“轉(zhuǎn)折點(diǎn)”,滿足題意。

4)當(dāng),令,解得:,且,在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,取,故上恒成立,則在區(qū)間上單調(diào)遞增,當(dāng)時(shí),,則當(dāng),,則,所以為函數(shù)在區(qū)間上的一個(gè)“轉(zhuǎn)折點(diǎn)”,滿足題意。

(5)當(dāng),),則在區(qū)間上單調(diào)遞減,取,則,所以在區(qū)間上單調(diào)遞減,,當(dāng)時(shí),恒成立,故為函數(shù)在區(qū)間上的一個(gè)“轉(zhuǎn)折點(diǎn)”,滿足題意。

6)當(dāng)時(shí), ),則在區(qū)間上單調(diào)遞減,所以當(dāng),,當(dāng),,則在區(qū)間上單調(diào)遞增,,在上單調(diào)遞減,

所以當(dāng)時(shí),,不滿足題意,舍去,

綜述所述:實(shí)數(shù)的取值范圍為

故答案選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,地球上的水資源有限,愛(ài)護(hù)地球、節(jié)約用水是我們每個(gè)人的義務(wù)與責(zé)任.某市政府為了對(duì)自來(lái)水的使用進(jìn)行科學(xué)管理,節(jié)約水資源,計(jì)劃確定一個(gè)家庭年用水量的標(biāo)準(zhǔn).為此,對(duì)全市家庭日常用水量的情況進(jìn)行抽樣抽查,獲得了個(gè)家庭某年的用水量(單位:立方米),統(tǒng)計(jì)結(jié)果如下表及圖所示.

分組

頻數(shù)

頻率

25

0.19

50

0.23

0.18

5

1)分別求出,的值;

2)若以各組區(qū)間中點(diǎn)值代表該組的取值,試估計(jì)全市家庭年均用水量;

3)從樣本中年用水量在(單位:立方米)的5個(gè)家庭中任選3個(gè),作進(jìn)一步的跟蹤研究,求年用水量最多的家庭被選中的概率(5個(gè)家庭的年用水量都不相等).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(其中α為參數(shù)),曲線C2:(x﹣1)2+y2=1,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;

(2)若射線θ=(ρ>0)與曲線C1,C2分別交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(常數(shù)).

(Ⅰ)當(dāng)的圖象相切時(shí),求的值;

(Ⅱ)設(shè),若存在極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2018年第一季度五省GDP情況圖,則下列陳述中不正確的是

A. 2018年第一季度GDP增速由高到低排位第5的是浙江省

B. 2017年同期相比,各省2018年第一季度的GDP總量實(shí)現(xiàn)了增長(zhǎng)

C. 2017年同期河南省的GDP總量不超過(guò)4000億元

D. 2018年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地有種特產(chǎn)水果很受當(dāng)?shù)乩习傩諝g迎,但該種水果只能在9月份銷售,且該種水果只能當(dāng)天食用口感最好,隔天食用口感較差。某超市每年9月份都銷售該特產(chǎn)水果,每天計(jì)劃進(jìn)貨量相同,進(jìn)貨成本每公斤8元,銷售價(jià)每公斤12元;當(dāng)天未賣出的水果則轉(zhuǎn)賣給水果罐頭廠,但每公斤只能賣到5元。根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)?shù)貧鉁胤秶幸欢P(guān)系。如果氣溫不低于30度,需求量為5000公斤;如果氣溫位于,需求量為3500公斤;如果氣溫低于25度,需求量為2000公斤;為了制定今年9月份訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年9月份的氣溫范圍數(shù)據(jù),得下面的頻數(shù)分布表

氣溫范圍

天數(shù)

4

14

36

21

15

以氣溫范圍位于各區(qū)間的頻率代替氣溫范圍位于該區(qū)間的概率.

1)求今年9月份這種水果一天需求量(單位:公斤)的分布列和數(shù)學(xué)期望;

2)設(shè)9月份一天銷售特產(chǎn)水果的利潤(rùn)為(單位:元),當(dāng)9月份這種水果一天的進(jìn)貨量為(單位:公斤)為多少時(shí),的數(shù)學(xué)期望達(dá)到最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海關(guān)對(duì)同時(shí)從A,BC三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測(cè),從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進(jìn)行檢測(cè).

地區(qū)

A

B

C

數(shù)量

50

150

100

(1)求這6件樣品中來(lái)自A,B,C各地區(qū)商品的數(shù)量;

(2)若在這6件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)行進(jìn)一步檢測(cè),求這2件商品來(lái)自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,角A,B,C對(duì)應(yīng)的邊分別是ab,c,已知cos2A﹣3cosB+C=1

1)求角A的大;

2)若△ABC的面積S=5,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若,求上的最小值;

2)求的極值點(diǎn);

3)若內(nèi)有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案