【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
【答案】(1)(2)
【解析】
試題分析:(1)根據(jù)二倍角公式,三角形內(nèi)角和,所以,整理為關(guān)于的二次方程,解得角的大;(2)根據(jù)三角形的面積公式和上一問(wèn)角,代入后解得邊,這樣就知道,然后根據(jù)余弦定理再求,最后根據(jù)證得定理分別求得和.
試題解析:(1)由cos 2A-3cos(B+C)=1,
得2cos2A+3cos A-2=0,
即(2cos A-1)(cos A+2)=0,
解得cos A=或cos A=-2(舍去).
因?yàn)?/span>0<A<π,所以A=.
(2)由S=bcsin A=bc×=bc=5,得bc=20,又b=5,知c=4.
由余弦定理得a2=b2+c2-2bccos A=25+16-20=21,故a=.
從而由正弦定理得sin B sin C=sin A×sin A=sin2A=×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知邊長(zhǎng)為的正的頂點(diǎn)在平面內(nèi),頂點(diǎn),在平面外的同一側(cè),點(diǎn),分別為,在平面內(nèi)的投影,設(shè),直線與平面所成的角為.若是以角為直角的直角三角形,則的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過(guò)12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過(guò)12噸且不超過(guò)14噸時(shí),超過(guò)12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過(guò)14噸時(shí),超過(guò)14噸部分按7.80元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過(guò)抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.
( i)現(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水用量都超過(guò)12噸的概率;
(ⅱ)試估計(jì)全市居民用水價(jià)格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)y(元)與月份x的散點(diǎn)圖,其擬合的線性回歸方程是 .若李某2016年1~7月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形ABCD如圖1中,AD= ,AB=2,E為AB中點(diǎn),將△ADE沿DE折起到△PDE,所得四棱錐P﹣BCDE如圖2所示.
(Ⅰ)若點(diǎn)M為PC中點(diǎn),求證:BM∥平面PDE;
(Ⅱ)當(dāng)平面PDE⊥平面BCDE時(shí),求三棱錐E﹣PCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某海面上有、、三個(gè)小島(面積大小忽略不計(jì)),島在島的北偏東方向處,島在島的正東方向處.
(1)以為坐標(biāo)原點(diǎn),的正東方向?yàn)?/span>軸正方向,為單位長(zhǎng)度,建立平面直角坐標(biāo)系,寫(xiě)出、的坐標(biāo),并求、兩島之間的距離;
(2)已知在經(jīng)過(guò)、、三個(gè)點(diǎn)的圓形區(qū)域內(nèi)有未知暗礁,現(xiàn)有一船在島的南偏西方向距島處,正沿著北偏東行駛,若不改變方向,試問(wèn)該船有沒(méi)有觸礁的危險(xiǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與BC1所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,CD=2,△ABC是邊長(zhǎng)為3的等邊三角形.
(1)求AD;
(2)求sin∠DAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若,
(Ⅰ)求證:;
(Ⅱ)求證:;
(Ⅲ)在(Ⅱ)中的不等式中,能否找到一個(gè)代數(shù)式,滿足所求式?若能,請(qǐng)直接寫(xiě)出該代數(shù)式;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com