【題目】(注意:在試題卷上作答無效)

已知數(shù)列中,.

)設(shè),求數(shù)列的通項公式;

)求使不等式成立的的取值范圍.

【答案】

【解析】

試題(1)由得,,然后令進(jìn)行替換得到關(guān)系式,然后運用待定系數(shù)法將其整理為,即可求出的通項公式,進(jìn)而求出數(shù)列的通項公式;

2)先求出時的的取值范圍,然后用數(shù)學(xué)歸納法對其進(jìn)行證明,即證明當(dāng)時,,然后當(dāng)時,令,由,得;易知當(dāng)時,不滿足條件,進(jìn)而可確定參數(shù)的取值范圍.

試題解析:(1)由已知有:,所以,所以,所以,所以是一個首項為,公比為4的等比數(shù)列,,即;

2)由,得.下面用數(shù)學(xué)歸納法證明:當(dāng)時,

當(dāng)時,,命題成立;

假設(shè)當(dāng)時,,那么當(dāng)時,

①②可知,當(dāng)時,;當(dāng)時,令,由,得;當(dāng)時,;當(dāng)時,,且

所以,,而當(dāng)時,.不滿足題意應(yīng)舍去.

綜上所述,的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為的正方體中,的中點,上任意一點,,上兩動點,且的長為定值,則下面四個值中不是定值的是(

A.到平面的距離B.直線與平面所成的角

C.三棱錐的體積D.二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線方程是,求函數(shù)上的值域;

(2)當(dāng)時,記函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為2的圓位于軸右側(cè),且與直線相切.

(1)求圓的方程;

(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某個命題與自然數(shù)n有關(guān),如果當(dāng))時該命題成立,則可得時該命題也成立,若已知時命題不成立,則下列說法正確的是______(填序號)

1時,該命題不成立;

2時,該命題不成立;

3時,該命題可能成立;

4時,該命題可能成立也可能不成立,但若時命題成立,則對任意,該命題都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)等比數(shù)列中,首項為 ,其前n項和是,且成等差數(shù)列,數(shù)列滿足條件

() 求數(shù)列、的通項公式;

() 設(shè) ,記數(shù)列的前項和 .

①求 ;②求正整數(shù),使得對任意,均有 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題中真命題是  

A. 同垂直于一直線的兩條直線互相平行

B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱

C. 過空間任一點與兩條異面直線都垂直的直線有且只有一條

D. 過球面上任意兩點的大圓有且只有一個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,若以,為焦點的雙曲線的漸近線經(jīng)過點,則該雙曲線的離心率為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)在點處的切線方程;

(2)若,求函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)有兩個極值點,若過兩點的直線軸的交點在曲線上,求的值.

查看答案和解析>>

同步練習(xí)冊答案