設(shè)函數(shù),已知的極值點(diǎn).
(Ⅰ)求的值;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)設(shè),比較的大小.
(1),.
(2)上是單調(diào)遞增的;在上是單調(diào)遞減的.
(3)(1)時(shí)
(2) 時(shí),
(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133341869799.gif" style="vertical-align:middle;" />,
的極值點(diǎn),所以,
因此解該方程組得,.
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133341588286.gif" style="vertical-align:middle;" />,,所以,
,解得,,
因?yàn)楫?dāng)時(shí),;
當(dāng)時(shí),
所以上是單調(diào)遞增的;在上是單調(diào)遞減的.
(Ⅲ)由(Ⅰ)可知,
,令,則.
,得,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133342664445.gif" style="vertical-align:middle;" />時(shí),,
所以上單調(diào)遞減.故時(shí),;
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133342867454.gif" style="vertical-align:middle;" />時(shí),,所以上單調(diào)遞增.
時(shí),.
所以對(duì)任意,恒有,又時(shí),,
因此時(shí),
時(shí),
所以,   (1)時(shí)
(2) 時(shí),
【注:】按以下做法不扣分(以下是高考命題人給的原解)這種解法不太嚴(yán)謹(jǐn),但也被大部分人所接受
(Ⅲ)由(Ⅰ)可知,
,令,則.
,得,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133343288436.gif" style="vertical-align:middle;" />時(shí),,
所以上單調(diào)遞減.故時(shí),;
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133343366447.gif" style="vertical-align:middle;" />時(shí),,所以上單調(diào)遞增.
時(shí),.
所以對(duì)任意,恒有,又,因此,
故對(duì)任意,恒有
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知
   (1)當(dāng)a=1時(shí),試求函數(shù)的單調(diào)區(qū)間,并證明此時(shí)方程=0只有一個(gè)實(shí)數(shù)根,并求出此實(shí)數(shù)根;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在R上可導(dǎo)函數(shù)當(dāng)時(shí)取得極大值。當(dāng)時(shí)取得極小值,則的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(I)(i)求函數(shù)的圖象的交點(diǎn)A的坐標(biāo);
(ii)設(shè)函數(shù)的圖象在交點(diǎn)A處的切線分別為是否存在這樣的實(shí)數(shù)a,使得?若存在,請(qǐng)求出a的值和相應(yīng)的點(diǎn)A坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
(II)記上最小值為F(a),求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求函數(shù)處的導(dǎo)數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,且在x=-1處取得極值.
(Ⅰ)求a,的值;
(Ⅱ)求函數(shù)上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),曲線在點(diǎn)x=1處的切線l不過(guò)第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線l的距離為,若時(shí),有極值.
(I) 求a、b、c的值;
(II) 求在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,
(I)若,求函數(shù)在區(qū)間的最大值與最小值;
(II)若函數(shù)在區(qū)間上都是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2)當(dāng)時(shí),若對(duì)任意,均有,求實(shí)數(shù)的取值范圍;
(3)若,對(duì)任意、,且,試比較 的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案