【題目】如圖,在四棱錐中,底面,,,點(diǎn)為棱的中點(diǎn),

(1)證明;

(2)若點(diǎn)為棱上一點(diǎn),且,求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

分析:(Ⅰ)由題意可得.兩兩垂直,建立空間直角坐標(biāo)系,根據(jù)可證得Ⅱ)根據(jù)點(diǎn)在棱上可設(shè),再由,,由此可得,從而可得然后可求得平面的法向量為,又平面的一個(gè)法向量,可得,然后結(jié)合圖形可得所求.

詳解:(Ⅰ)證明:底面 平面,

,,

,

.兩兩垂直.

為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系.

則由題意得,

,

,

(Ⅱ)可得,

由點(diǎn)在棱上,

設(shè),

,

,

解得

設(shè)平面的法向量為,則

,得

,得

由題意取平面的一個(gè)法向量

,

由圖形知二面角是銳角,

所以二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人玩一種游戲,每次由甲、乙各出1到5根手指,若和為偶數(shù)算甲贏,否則算乙贏.

(1)若以表示和為6的事件,求

(2)現(xiàn)連玩三次,若以表示甲至少贏一次的事件,表示乙至少贏兩次的事件,試問(wèn)是否為互斥事件?為什么?

(3)這種游戲規(guī)則公平嗎?試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其

上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

保費(fèi)

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

頻數(shù)

60

50

30

30

20

10

1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”.的估計(jì)值;

2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”.的估計(jì)值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有120粒試驗(yàn)種子需要播種,現(xiàn)有兩種方案:方案一:將120粒種子分種在40個(gè)坑內(nèi),每坑3粒;方案二:120粒種子分種在60個(gè)坑內(nèi),每坑2粒 如果每粒種子發(fā)芽的概率為0.5,并且,若一個(gè)坑內(nèi)至少有1粒種子發(fā)芽,則這個(gè)坑不需要補(bǔ)種;若一個(gè)坑內(nèi)的種子都沒發(fā)芽,則這個(gè)坑需要補(bǔ)種(每個(gè)坑至多補(bǔ)種一次,且第二次補(bǔ)種的種子顆粒同第一次).假定每個(gè)坑第一次播種需要2元,補(bǔ)種1個(gè)坑需1元;每個(gè)成活的坑可收貨100粒試驗(yàn)種子,每粒試驗(yàn)種子收益1元.

(1)用表示播種費(fèi)用,分別求出兩種方案的的數(shù)學(xué)期望;

(2)用表示收益,分別求出兩種方案的收益的數(shù)學(xué)期望;

(3)如果在某塊試驗(yàn)田對(duì)該種子進(jìn)行試驗(yàn),你認(rèn)為應(yīng)該選擇哪種方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A.因?yàn)?/span>,所以是函數(shù)的一個(gè)周期;

B.因?yàn)?/span>,所以是函數(shù)的最小正周期;

C.因?yàn)?/span>時(shí),等式成立,所以是函數(shù)的一個(gè)周期;

D.因?yàn)?/span>,所以不是函數(shù)的一個(gè)周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)處取得極值,對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新能源汽車的春天來(lái)了!2018年3月5日上午,李克強(qiáng)總理做政府工作報(bào)告時(shí)表示,將新能源汽車車輛購(gòu)置稅優(yōu)惠政策再延長(zhǎng)三年,自2018年1月1日至2020年12月31日,對(duì)購(gòu)置的新能源汽車免征車輛購(gòu)置稅.某人計(jì)劃于2018年5月購(gòu)買一輛某品牌新能源汽車,他從當(dāng)?shù)卦撈放其N售網(wǎng)站了解到近五個(gè)月實(shí)際銷量如下表:

月份

2017.12

2018.01

2018.02

2018.03

2018.04

月份編號(hào)t

1

2

3

4

5

銷量(萬(wàn)輛)

0.5

0.6

1

1.4

1.7

(1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放菩履茉雌噷?shí)際銷量(萬(wàn)輛)與月份編號(hào)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)2018年5月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量;

(2)2018年6月12日,中央財(cái)政和地方財(cái)政將根據(jù)新能源汽車的最大續(xù)航里程(新能源汽車的最大續(xù)航里程是指理論上新能源汽車所裝的燃料或電池所能夠提供給車跑的最遠(yuǎn)里程)對(duì)購(gòu)車補(bǔ)貼進(jìn)行新一輪調(diào)整.已知某地?cái)M購(gòu)買新能源汽車的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的購(gòu)車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

補(bǔ)貼金額預(yù)期值區(qū)間(萬(wàn)元)

20

60

60

30

20

10

將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購(gòu)買新能源汽車的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取3人中對(duì)補(bǔ)貼金額的心理預(yù)期值不低于3萬(wàn)元的人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考公式及數(shù)據(jù):①回歸方程,其中,,②,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019420日,遼寧省人民政府公布了新高考方案,方案中“2”指的是在思想政治、地理、化學(xué)、生物4門中選擇2門.“2”中記入高考總分的單科成績(jī)是由原始分轉(zhuǎn)化得到的等級(jí)分,學(xué)科高考原始分在全省的排名越靠前,等級(jí)分越高.小明同學(xué)是2018級(jí)的學(xué)生.已確定了必選地理且不選政治,為確定另選一科,小明收集并整理了生物與化學(xué)近10大聯(lián)考的成績(jī)百分比排名數(shù)據(jù)x(如的含義是指在該次考試中,成績(jī)高于小明的考生占參加該次考試的考生數(shù)的)繪制莖葉圖如下.

則由圖中數(shù)據(jù)生物學(xué)科聯(lián)考百分比排名的分位數(shù)為________.從平均數(shù)的角度來(lái)看你認(rèn)為小明更應(yīng)該選擇________.(填生物或化學(xué))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:

方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;

方案二:每月底薪3500元,月銷售量不超過(guò)300件,沒有提成,超過(guò)300件的部分每件提成30元.

(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;

(2)從該銷售公司隨機(jī)選取一名推銷員,對(duì)他(或她)過(guò)去兩年的銷售情況進(jìn)行統(tǒng)計(jì),得到如下統(tǒng)計(jì)表:

月銷售產(chǎn)品件數(shù)

300

400

500

600

700

次數(shù)

2

4

9

5

4

把頻率視為概率,分別求兩種方案推銷員的月工資超過(guò)11090元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案