過原點(diǎn)的直線交雙曲線 于P,Q兩點(diǎn),現(xiàn)將坐標(biāo)平面沿直線y= -x折成直二面角,則折后PQ長度的最小值等于

A. B.4 C. D.

B

解析試題分析:∵雙曲線是等軸雙曲線,以直線y=±x為漸近線

∴將雙曲線按逆時(shí)針方向旋轉(zhuǎn)45°角,可得雙曲線的圖象
∵雙曲線的頂點(diǎn)(,0),逆時(shí)針方向旋轉(zhuǎn)45°
變?yōu)辄c(diǎn)(,
∴點(diǎn)()在的圖象上,可得m=
即雙曲線按逆時(shí)針方向旋轉(zhuǎn)45°角,得到雙曲線的圖象
問題轉(zhuǎn)化為:過原點(diǎn)的直線交雙曲線于P、Q兩點(diǎn)
將坐標(biāo)平面沿直線y軸折成直二面角,求折后線段PQ的長度的最小值
設(shè)P(t,)(t>0),過點(diǎn)P作PM⊥y軸于M,連結(jié)MQ,
可得M(0,),Q(-t,-),
|MQ|==,在折疊后的圖形中,Rt△PMQ中,|PM|=t,
得|PQ|2=|PM|2+|MQ|2==16,
當(dāng)且僅當(dāng)t2=4,即t=2時(shí)等號(hào)成立,
∴當(dāng)t=2時(shí),即P坐標(biāo)為(2,)時(shí),|PQ|的最小值為=4.
綜上所述,折后線段PQ的長度的最小值等于4,故選B.
考點(diǎn):兩點(diǎn)間的距離公式、面面垂直的性質(zhì)、勾股定理,基本不等式求最值,邏輯推理能力,運(yùn)算能力,轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓內(nèi)一定點(diǎn),為圓上的兩不同動(dòng)點(diǎn).
(1)若兩點(diǎn)關(guān)于過定點(diǎn)的直線對(duì)稱,求直線的方程.
(2)若圓的圓心與點(diǎn)關(guān)于直線對(duì)稱,圓與圓交于兩點(diǎn),且,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

點(diǎn)P在正方體ABCD﹣A1B1C1D1的底面ABCD所在平面上,E是A1A的中點(diǎn),且∠EPA=∠D1PD,則點(diǎn)P的軌跡是( 。

A.直線 B.圓 C.拋物線 D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

過拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),點(diǎn)是原點(diǎn),若,則的面積為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,若拋物線的準(zhǔn)線與雙曲線5x2-y2= 20的兩條漸近線圍成的三角形的面積等于,則拋物線的方程為

A.y2=4x B.y2=8x C.x2=4y D.x2=8y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

斜率為2的直線L 經(jīng)過拋物線的焦點(diǎn)F,且交拋物線與A、B兩點(diǎn),若AB的中點(diǎn)到拋物線準(zhǔn)線的距離1,則P的值為( ).
A.1               B.           C.            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知曲線::,且曲線的焦點(diǎn)分別為、,點(diǎn)的一個(gè)交點(diǎn),則△的形狀是(   )

A.銳角三角形 B.直角三角形 C.鈍角三角形 D.都有可能 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓方程為
 (1)求圓心軌跡的參數(shù)方程;
(2)點(diǎn)(1)中曲線上的動(dòng)點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)
求過兩點(diǎn)且圓心在x軸上的圓的標(biāo)準(zhǔn)方程并判斷點(diǎn)與圓的關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案