(本小題15分)
已知橢圓C:,點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線(xiàn)AB與圓G: (是橢圓的焦半距)相離,P是直線(xiàn)AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓G的兩切線(xiàn),切點(diǎn)分別為M、N.
(1)若橢圓C經(jīng)過(guò)兩點(diǎn)、,求橢圓C的方程;
(2)當(dāng)為定值時(shí),求證:直線(xiàn)MN經(jīng)過(guò)一定點(diǎn)E,并求的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍.
解:(1)令橢圓,其中,
得,所以,即橢圓為. ………3分
(2)直線(xiàn),
設(shè)點(diǎn),則中點(diǎn)為,
所以點(diǎn)所在的圓的方程為,
化簡(jiǎn)為, ………5分
與圓作差,即有直線(xiàn),
因?yàn)辄c(diǎn)在直線(xiàn)上,所以,
所以,所以,
得,故定點(diǎn), …8分
. ………9分
(3)由直線(xiàn)AB與圓G: (是橢圓的焦半距)相離,
則,即,,
得
因?yàn)?sub>, 所以,① ………11分
連接若存在點(diǎn)使為正三角形,則在中,,
所以,,
,得
因?yàn)?sub>,所以,② ………14分
由①②,,
所以. ………15分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題15分)已知拋物線(xiàn),過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),且.
(1)求拋物線(xiàn)的方程;
(2)過(guò)點(diǎn)作軸的平行線(xiàn)與直線(xiàn)相交于點(diǎn),若是等腰三角形,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年浙江省寧?h正學(xué)中學(xué)高二下學(xué)期第二次階段性考試重點(diǎn)班文數(shù) 題型:解答題
(本小題15分)
已知函數(shù)有極值.
(1)求的取值范圍;
(2)若在處取得極值,且當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一第一學(xué)期期末測(cè)試數(shù)學(xué)試卷 題型:解答題
(本小題15分)
已知函數(shù)在一個(gè)周期內(nèi)的圖象如下圖所示.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
|
不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年浙江省高二下學(xué)期第二次階段性考試重點(diǎn)班文數(shù) 題型:解答題
(本小題15分)
已知函數(shù)有極值.
(1)求的取值范圍;
(2)若在處取得極值,且當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com