【題目】已知函數(shù) .

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)若,則當(dāng)時(shí),函數(shù)的圖象是否總在直線上方?請(qǐng)寫出判斷過程.

【答案】(1)見解析.

(2)見解析.

【解析】

(1)求出函數(shù)的導(dǎo)數(shù),通過討論m的范圍,求出函數(shù)的單調(diào)區(qū)間即可;

(2)令g(x)=x,討論m的范圍,根據(jù)函數(shù)的單調(diào)性求出g(x)的最大值和f(x)的最小值,結(jié)合函數(shù)恒成立分別判斷即可證明結(jié)論.

(1)函數(shù)定義域?yàn)?/span>,

.

①當(dāng),即時(shí),,此時(shí)上單調(diào)遞增;

②當(dāng),即,

時(shí),,此時(shí)單調(diào)遞增,

時(shí),,此時(shí)單調(diào)遞減,

時(shí),,此時(shí)單調(diào)遞增.

③當(dāng),即時(shí),,,此時(shí)單調(diào)遞增,

時(shí),,此時(shí)單調(diào)遞減,

時(shí),,此時(shí)單調(diào)遞增.

綜上所述,①當(dāng)時(shí),上單調(diào)遞增,

②當(dāng)時(shí),上單調(diào)遞增,上單調(diào)遞減,

③當(dāng)時(shí),上單調(diào)遞增,上單調(diào)遞減.

(2)當(dāng)時(shí),由(1)知上單調(diào)遞增,在上單調(diào)遞減.

.

①當(dāng)時(shí),,所以函數(shù)圖象在圖象上方.

②當(dāng)時(shí),函數(shù)單調(diào)遞減,所以其最小值為,最大值為,所以下面判斷的大小,即判斷的大小,

其中

,

,則,

,所以,單調(diào)遞增;

所以,故存在,

使得

所以上單調(diào)遞減,在單調(diào)遞增,

所以,

所以時(shí),,

,也即,

所以函數(shù)的圖象總在直線上方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變;

②設(shè)有一個(gè)線性回歸方程,變量x增加1個(gè)單位時(shí),y平均增加5個(gè)單位;

③設(shè)具有相關(guān)關(guān)系的兩個(gè)變量x,y的相關(guān)系數(shù)為r,則|r|越接近于0,x和y之間的線性相關(guān)程度越強(qiáng);

④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2的值,則K2的值越大,判斷兩個(gè)變量間有關(guān)聯(lián)的把握就越大.

以上錯(cuò)誤結(jié)論的個(gè)數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,側(cè)面PAD是正三角形,側(cè)面底面ABCD,MPD的中點(diǎn).

1)求證:平面PCD;

2)求側(cè)面PBC與底面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C=2pxp>0)的準(zhǔn)線方程為x=-,F為拋物線的焦點(diǎn)

I)求拋物線C的方程;

II)若P是拋物線C上一點(diǎn),點(diǎn)A的坐標(biāo)為(,2,的最小值;

III)若過點(diǎn)F且斜率為1的直線與拋物線C交于M,N兩點(diǎn),求線段MN的中點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥底面ABCD,PDAD,PD=AD,E為棱PC的中點(diǎn)

I)證明:平面PBC⊥平面PCD;

II)求直線DE與平面PAC所成角的正弦值;

III)若FAD的中點(diǎn),在棱PB上是否存在點(diǎn)M,使得FMBD?若存在,求的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為拋物線的焦點(diǎn),為拋物線上三點(diǎn),且點(diǎn)在第一象限,直線經(jīng)過點(diǎn)與拋物線在點(diǎn)處的切線平行,點(diǎn)的中點(diǎn).

(1)證明:軸平行;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)生產(chǎn)廠商為迎接5G時(shí)代的到來,要生產(chǎn)一款5G手機(jī),在生產(chǎn)之前,該公司對(duì)手機(jī)屏幕的需求尺寸進(jìn)行社會(huì)調(diào)查,共調(diào)查了400人,將這400人按對(duì)手機(jī)屏幕的需求尺寸分為6組,分別是:,,,,(單位:英寸),得到如下頻率分布直方圖:

其中,屏幕需求尺寸在的一組人數(shù)為50人.

1)求ab的值;

2)用分層抽樣的方法在屏幕需求尺寸為兩組人中抽取6人參加座談,并在6人中選擇2人做代表發(fā)言,則這2人來自同一分組的概率是多少?

3)若以廠家此次調(diào)查結(jié)果的頻率作為概率,市場(chǎng)隨機(jī)調(diào)查兩人,這兩人屏幕需求尺寸分別在的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中的項(xiàng)按順序可以排成如圖的形式,第一行1項(xiàng),排a1;第二行2項(xiàng),從左到右分別排a2,a3;第三行3項(xiàng),……依此類推,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則滿足Sn2019的最小正整數(shù)n的值為()

A. 20B. 21C. 26D. 27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在點(diǎn)處的切線方程為

(1)求的解析式;

(2)求的單調(diào)區(qū)間;

(3)若函數(shù)在定義域內(nèi)恒有成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案