【題目】貴陽市交管部門于20184月對(duì)貴陽市長(zhǎng)期執(zhí)行的“兩限”政策進(jìn)行了調(diào)整,調(diào)整后貴陽市貴A普客小汽車擁有和外地牌照汽車一樣的駛?cè)胍画h(huán)開四停四的權(quán)利,為統(tǒng)計(jì)開放政策實(shí)施后貴陽市一環(huán)內(nèi)城區(qū)的交通流量狀況,市交管部門抽取了某月30天內(nèi)的日均汽車流量與實(shí)際容納量進(jìn)行對(duì)比,比值記為,若該比值不超過1稱為“暢通”,否則稱為“擁堵”,如圖所示的程序框圖實(shí)現(xiàn)的功能是(

A.30天內(nèi)交通的暢通率B.30天內(nèi)交通的擁堵率

C.30天內(nèi)交通的暢通天數(shù)D.30天內(nèi)交通的擁堵天數(shù)

【答案】A

【解析】

模擬程序的運(yùn)行過程,可得的值為30天內(nèi)交通的暢通天數(shù),即可得到答案.

由程序框圖可知,只有當(dāng)時(shí),才計(jì)數(shù)一次,并且進(jìn)入循環(huán),進(jìn)行下一次判斷,所以的數(shù)量為.代表暢通,所以的值為30天內(nèi)交通的暢通天數(shù).當(dāng)時(shí),不滿足條件,退出循環(huán).所以輸出表示30天內(nèi)交通的暢通率.

故選:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過,三點(diǎn)的圓的圓心為.

1)是否存在過點(diǎn),斜率為的直線,使得拋物線上存在兩點(diǎn)關(guān)于直線對(duì)稱?若存在,求出的范圍;若不存在,說明理由;

2)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),圓,過R點(diǎn)的直線交圓于M,N兩點(diǎn)過R點(diǎn)作直線SMQ點(diǎn).

1)求Q點(diǎn)的軌跡方程;

2)若A,BQ的軌跡與x軸的左右交點(diǎn),為該軌跡上任一動(dòng)點(diǎn),設(shè)直線AP,BP分別交直線l于點(diǎn)M,N,判斷以MN為直徑的圓是否過定點(diǎn)。如圓過定點(diǎn),則求出該定點(diǎn);如不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于,兩點(diǎn),且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極小值

(1)求實(shí)數(shù)的值;

(2)設(shè),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為,C1上任意一點(diǎn)P的直角坐標(biāo)為,通過變換得到點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo).

1)求點(diǎn)的軌跡C2的直角坐標(biāo)方程;

2)直線的參數(shù)方程為為參數(shù)),C2于點(diǎn)M、N,點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,平面平面,,四邊形為平行四邊形.

1)證明:;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級(jí)有1000名學(xué)生,其中理科班學(xué)生占80%,全體理科班學(xué)生參加一次考試,考試成績(jī)近似地服從正態(tài)分布N72,36),若考試成績(jī)不低于60分為及格,則此次考試成績(jī)及格的人數(shù)約為(

(參考數(shù)據(jù):若ZNμ,σ2),則PμσZμ+σ)=0.6826,Pμ2σZμ+2σ)=0.9544,Pμ3σZμ+3σ)=0.9974

A.778B.780C.782D.784

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

寫出的普通方程和的直角坐標(biāo)方程;

相交于AB兩點(diǎn),求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案