【題目】在直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于兩點(diǎn),且,求直線的傾斜角.

【答案】(1) ; (2).

【解析】

1)根據(jù)平方關(guān)系消參數(shù)得直線的普通方程,根據(jù)得曲線的直角坐標(biāo)方程(2)利用直線參數(shù)方程幾何意義求解.

(1)因?yàn)橹本的參數(shù)方程為為參數(shù)),

當(dāng)時(shí),直線的直角坐標(biāo)方程為

當(dāng)時(shí),直線的直角坐標(biāo)方程為

因?yàn)?/span>,

因?yàn)?/span>,所以

所以的直角坐標(biāo)方程為

(2)解法1:曲線的直角坐標(biāo)方程為,

將直線的參數(shù)方程代入曲線的方程整理,得

因?yàn)?/span>,可設(shè)該方程的兩個(gè)根為,

,

所以

整理得,

因?yàn)?/span>,所以

解得

綜上所述,直線的傾斜角為

解法2:直線與圓交于兩點(diǎn),且,

故圓心到直線的距離

①當(dāng)時(shí),直線的直角坐標(biāo)方程為,符合題意.

②當(dāng)時(shí),直線的方程為

所以,整理得

解得

綜上所述,直線的傾斜角為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某日A, B, C三個(gè)城市18個(gè)銷售點(diǎn)的小麥價(jià)格如下表:

銷售點(diǎn)序號(hào)

所屬城市

小麥價(jià)格(元/噸)

銷售點(diǎn)序號(hào)

所屬城市

小麥價(jià)格(元/噸)

1

A

2420

10

B

2500

2

C

2580

11

A

2460

3

C

2470

12

A

2460

4

C

2540

13

A

2500

5

A

2430

14

B

2500

6

C

2400

15

B

2450

7

A

2440

16

B

2460

8

B

2500

17

A

2460

9

A

2440

18

A

2540

(Ⅰ)求B市5個(gè)銷售點(diǎn)小麥價(jià)格的中位數(shù);

(Ⅱ)甲從B市的銷售點(diǎn)中隨機(jī)挑選一個(gè)購(gòu)買1噸小麥,乙從C市的銷售點(diǎn)中隨機(jī)挑選一個(gè)購(gòu)買1噸小麥,求甲花費(fèi)的費(fèi)用比乙高的概率;

(Ⅲ)如果一個(gè)城市的銷售點(diǎn)小麥價(jià)格方差越大,則稱其價(jià)格差異性越大.請(qǐng)你對(duì)A、B、C三個(gè)城市按照小麥價(jià)格差異性從大到小進(jìn)行排序(只寫(xiě)出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,真命題的個(gè)數(shù)是( 。

①若“p∨q”為真命題,則“p∧q”為真命題;

②“a∈(0,+∞),函數(shù)y=在定義域內(nèi)單調(diào)遞增”的否定;

③l為直線,α,β為兩個(gè)不同的平面,若l⊥β,α⊥β,則l∥α;

④“x∈R,≥0”的否定為“R,<0”.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面ABCD為直角梯形,,,側(cè)面底面ABCD,

PB的中點(diǎn)為E,求證:平面PCD;

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)求曲線在點(diǎn)處的切線方程;

)當(dāng)時(shí),求證:函數(shù)有且僅有一個(gè)零點(diǎn);

)當(dāng)時(shí),寫(xiě)出函數(shù)的零點(diǎn)的個(gè)數(shù).(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,,且,.

(1)求證:

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個(gè)零點(diǎn),,求的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下是新兵訓(xùn)練時(shí),某炮兵連周中炮彈對(duì)同一目標(biāo)的命中的情況的柱狀圖:

(1)計(jì)算該炮兵連這周中總的命中頻率,并確定第幾周的命中頻率最高;

(2)以(1)中的作為該炮兵連甲對(duì)同一目標(biāo)的命中率,若每次發(fā)射相互獨(dú)立,且炮兵甲發(fā)射次,記命中的次數(shù)為,求的方差;

(3)以(1)中的作為該炮兵連炮兵對(duì)同一目標(biāo)的命中率,試問(wèn)至少要用多少枚這樣的炮彈同時(shí)對(duì)該目標(biāo)發(fā)射一次,才能使目標(biāo)被擊中的概率超過(guò)(取

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中,,,分別為的中點(diǎn).

(1)證明:平面;

(2)已知與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案