精英家教網(wǎng)如圖,圓O1與圓O2相交于A、B,過A作圓O1的切線交圓O2于C,連CB并延長交圓O1于D,連AD,AB=2,BD=3,BC=5,則AD的長為
 
分析:首先根據(jù)切割線定理求得AC2的值,再根據(jù)勾股定理即可求得AD的長.
解答:解:∵AC是圓O2的切線,
∴∠CAB=∠D,
又∵∠C=∠C,
∴△ACD∽△BCA,
∴AC2=BC•CD,AB=2,BD=3,BC=5,
∴AC2=40,
∴AD=
64-40
=2
6

故答案為:2
6
點評:本題主要考查了與圓有關(guān)的比例線段.此題綜合運用了切割線定理、切線的性質(zhì)定理以及勾股定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,精英家教網(wǎng)圓O1與圓O2相交于A、B,過A作圓O1的切線交圓O2于C,連CB并延長交圓O1于D,連AD,AB=2,BD=3,BC=5,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,圓O1與圓O2的半徑都是1,O1O2=4,過動點P分別作圓O1.圓O2的切線PM、PN(M.N分別為切點),使得PM=
2
PN.試建立適當(dāng)?shù)淖鴺?biāo)系,并求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.選修4-1:幾何證明選講
如圖,圓O1與圓O2內(nèi)切于點A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點C ( O1不在AB上).求證:AB:AC為定值.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,求過橢圓
x=5cosφ
y=3sinφ
(φ為參數(shù))的右焦點,且與直線
x=4-2t
y=3-t
(t為參數(shù))平行的直線的普通方程.
D.選修4-5:不等式選講(本小題滿分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,圓O1與圓O2相交于A、B兩點,AB是圓O2的直徑,過A點作圓O1的切線交圓O2于點E,并與BO1的延長線交于點P,PB分別與圓O1、圓O2交于C,D兩點.

求證:(Ⅰ)PA·PD=PE·PC;

 (Ⅱ)AD=AE.

 

查看答案和解析>>

同步練習(xí)冊答案