【題目】已知拋物線的焦點(diǎn)為F,過拋物線上一點(diǎn)P作拋物線的切線交x軸于點(diǎn)D,交y軸于Q點(diǎn),當(dāng)時(shí),.
(1)判斷的形狀,并求拋物線的方程;
(2)若兩點(diǎn)在拋物線上,且滿足,其中點(diǎn),若拋物線上存在異于的點(diǎn)H,使得經(jīng)過三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,求點(diǎn)H的坐標(biāo).
【答案】(Ⅰ)等腰三角形,見解析(Ⅱ)
【解析】
試題(1)設(shè)P(x1,y1),求出切線l的方程,求解三角形的頂點(diǎn)坐標(biāo),排除邊長(zhǎng)關(guān)系,然后判斷三角形的形狀,然后求解拋物線方程.
(2)求出A,B的坐標(biāo)分別為(0,0),(4,4),設(shè)H(x0,y0)(x0≠0,x0≠4),求出AB的中垂線方程,AH的中垂線方程,解得圓心坐標(biāo),由,求解H點(diǎn)坐標(biāo)即可.
試題解析:
(1) (1)設(shè)P(x1,y1),
則切線l的方程為,且,
所以,,所以|FQ|=|FP|,
所以△PFQ為等腰三角形,且D為PQ的中點(diǎn),
所以DF⊥PQ,因?yàn)?/span>|DF|=2,∠PFD=60°,
所以∠QFD=60°,所以,得p=2,
所以拋物線方程為x2=4y;
(2)由已知,得A,B的坐標(biāo)分別為(0,0),(4,4),
設(shè)H(x0,y0)(x0≠0,x0≠4),
AB的中垂線方程為y=﹣x+4,①AH的中垂線方程為,②
聯(lián)立①②,解得圓心坐標(biāo)為:,
kNH==,
由,得,
因?yàn)閤0≠0,x0≠4,所以x0=﹣2,
所以H點(diǎn)坐標(biāo)為(﹣2,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),在上是增函數(shù),且,給出下列結(jié)論,
①若且,則;
②若且,則;
③若方程在內(nèi)恰有四個(gè)不同的實(shí)根, , , ,則或8;
④函數(shù)在內(nèi)至少有5個(gè)零點(diǎn),至多有13個(gè)零點(diǎn).
其中結(jié)論正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)結(jié)論:
(1)若,則恒成立;
(2)命題“若,則”的逆否命題為“若,則”;
(3)“命題為真”是“命題為真”的充分不必要條件;
(4)命題“”的否定是“”.
其中正確的結(jié)論的個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)已知是函數(shù)的一個(gè)極值點(diǎn).
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間(其中)上存在極值,求實(shí)數(shù)的取值范圍.
(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ)求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)求函數(shù)的解析式;
(2)若對(duì)任意,都有,求的取值范圍;
(3)證明函數(shù)的圖象在圖象的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,PD//MA,MA⊥AD,PM⊥平面CDM,MA=ADPD=1.
(1)求證:平面ABCD⊥平面AMPD;
(2)求三棱錐A﹣CMP的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的焦點(diǎn)是橢圓: ()的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)動(dòng)點(diǎn), 在橢圓上,且,記直線在軸上的截距為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù),當(dāng)時(shí),.
(1)求;
(2)當(dāng)時(shí),求的解析式.
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com